В персональном компьютере шина используется для. Структура и стандарты шин пк

Основным компонентом каждого ПК является материнская (системная) плата. На ней размещены все его основные элементы – процессор, оперативная память, видеокарта, контроллеры, а также слоты и разъёмы для подключения внешних периферийных устройств. Все компоненты материнской платы связаны между собой системой проводников (линий), по которым происходит обмен информацией. Эту совокупность линий называют информационной шиной. Шина, связывающая только два устройства, называется портом . В качестве примера, рассмотрим структуру, например, такой шины ПК:

Взаимодействие между компонентами и устройствами ПК, подключенными к разным шинам, осуществляется с помощью, так называемых мостов, реализованных на одной из микросхем Chipset.

Шины в ПК различаются по своему функциональному назначению:

- системная шина используется микросхемами Chipset для пересылки информации к процессору и обратно;

- шина кэш-памяти предназначена для обмена информацией между процессором и внешней кэш-памятью;

- шина памяти используется для обмена информацией между оперативной памятью и процессором;

- шины ввода-вывода используются для обмена информацией с периферийными устройствами.

Шины ввода-вывода подразделяются на локальные и стандартные. Локальная шина ввода-вывода – это скоростная шина, предназначенная для обмена информацией между быстродействующими периферийными устройствами (видеоадаптерами, сетевыми картами и др.) и процессором. В настоящее время в качестве локальной шины используется шина PCI Express (в прошлом использовалась шина AGP – Accelerated Graphics Port).

Стандартная шина ввода-вывода используется для подключения более медленных устройств (например, мыши, клавиатуры, модемов). До недавнего времени в качестве этой шины использовалась шина стандарта ISA. В настоящее время широко используется шина USB.

Компоненты шины

Архитектура любой шины имеет следующие компоненты:

- линии для обмена данными (шина данных). Шина данных обеспечивает обмен данными между процессором, картами расширения, установленными в слоты и памятью. Чем выше разрядность шины, тем больше данных может быть передано за один такт и тем выше производительность ПК. Компьютеры с процессором семейства Pentium имеют 64-разрядную шину данных.

- линии для адресации данных (шина адреса). Шина адреса служит для указания адреса какого-либо устройства, с которым процессор производит обмен данными. Каждый компонент ПК, каждый порт ввода-вывода и ячейка RAM имеют свой адрес.

- линии управления данными (шина управления). По шине управления передается ряд служебных сигналов: записи/считывания, готовности к приему/передаче данных, подтверждение приема данных, аппаратного прерывания, управления и других. Все сигналы шины управления предназначены для обеспечения передачи данных.

- контроллер шины , осуществляет управление процессом обмена данными и служебными сигналами и обычно выполняется в виде отдельной микросхемы, либо в виде совместимого набора микросхем – Chipset.

Основные характеристики шины

Разрядность шины определяется числом параллельных проводников, входящих в неё. Первая шина ISA для IBM PC была 8-разрядной, т.е. по ней можно было одновременно передавать 8 бит. Системные шины для современных ПК, например, Pentium IV – 64 – разрядные.

Пропускная способность шины определяется количеством байт информации, передаваемых по шине за секунду. Для определения пропускной способности шины необходимо умножить тактовую частоту шины на ее разрядность. Например, если разрядность шины 64, а тактовая частота 66 МГц, то пропускная способность = 8 (байт) * 66 МГц = 528 Мбайт/сек.

Частота шины - это тактовая частота, с которой происходит обмен данными по шине.

Внешние устройства подключаются к шинам посредством интерфейса.

Стандарты шин ПК

Принцип IBM-совместимости подразумевает стандартизацию интерфейсов отдельных компонентов ПК, что, в свою очередь, определяет гибкость системы в целом, т.е. возможность по мере необходимости изменять конфигурацию системы и подключать различные периферийные устройства. В случае несовместимости интерфейсов используются контроллеры.

Системная шина (FSB – Front Side Bus) это шина предназначена для обмена информацией между процессором, памятью и другими устройствами, входящими в систему. К системным шинам относятся GTL , имеющая разрядность 64 бит, тактовую частоту 66, 100 и 133 МГц; EV6 , спецификация которой позволяет повысить ее тактовую частоту до 377 МГц.

Шины ввода/вывода совершенствуются в соответствии с развитием периферийных устройств ПК.

- Шина ISA в течение многих лет считалась стандартом ПК, однако и до сих пор сохраняется в некоторых ПК наряду с современной шиной PCI. Корпорация Intel совместно с Microsoft разработала стратегию постепенного отказа от шины ISA. Вначале планируется исключить ISA-разъемы на материнской плате, а впоследствии исключить слоты ISA и подключать дисководы, мыши, клавиатуры, сканеры к шине USB, а винчестеры, приводы CD-ROM, DVD-ROM – к шине IEEE 1394.

- Шина EISA стала дальнейшим развитием шины ISA в направлении повышения производительности системы и совместимости ее компонентов. Шина не получила широкого распространения в связи с ее высокой стоимостью и пропускной способностью, уступающей пропускной способности появившейся на рынке шины VESA.

- Шина VESA или VLB , предназначена для связи процессора с быстрыми периферийными устройствами и представляет собой расширение шины ISA для обмена видеоданными. Во времена преобладания на компьютерном рынке процессора CPU 80486, шина VLB была достаточно популярна, однако в настоящее время ее вытеснила более производительная шина PCI.

- Шина РСI (Peripheral Component Interconnect bus – взаимосвязь периферийных компонентов) была разработана фирмой Intel для процессора Pentium. Основополагающим принципом, положенным в основу шины PCI, является применение так называемых мостов (Bridges), которые осуществляют связь между шиной PCI и другими типами шин. В шине PCI реализован принцип Bus Mastering, который подразумевает способность внешнего устройства при пересылке данных управлять шиной (без участия процессора). Во время передачи информации устройство, поддерживающее Bus Mastering, захватывает шину и становится главным. В этом случае центральный процессор освобождается для решения других задач, пока происходит передача данных. В современных материнских платах тактовая частота шины PCI задается как половина тактовой частоты системной шины, т.е. при тактовой частоте системной шины 66 МГц шина PCI будет работать на частоте 33 МГц. В настоящее время шина PCI стала фактическим стандартом среди шин ввода/вывода.

- Шина AGP - высокоскоростная локальная шина ввода/вывода, предназначенная исключительно для нужд видеосистемы. Она связывает видеоадаптер с системной памятью ПК. Шина AGP была разработана на основе архитектуры шины PCI, поэтому она также является 32-разрядной. Однако при этом у нее есть дополнительные возможности увеличения пропускной способности, в частности, за счет использования более высоких тактовых частот. Если в стандартном варианте 32-разрядная шина PCI имеет тактовую частоту 33 МГц, что обеспечивает теоретическую пропускную способность PCI 33 х 32= 1056 Мбит/с = 132 Мбайт/с, то шина AGP тактируется сигналом с частотой 66 МГц, поэтому ее пропускная способность в режиме 1х составляет, 66 х 32 = 264 Мбайт/сек; в режиме 2х эквивалентная тактовая частота составляет 132 МГц, а пропускная способность - 528 Мбайт/сек.; в режиме 4х пропускная способность около 1 Гбайт/сек.

- PCI Express – В 2004 году компанией Intel была разработана последовательная шина PCI-Express с пропускной способностью около 4 Гб/сек. Каждому устройству, подключенному к этой шине отводится собственный канал со скоростным показателем 250Мб/сек. При этом можно использовать сразу несколько каналов, например, при передаче данных к видеокарте. Также к плюсам данной шины можно отнести "горячую замену" любого подключенного к ней устройства, даже не выключая питания системного блока. Высокая пиковая производительность шины PCI Express позволяет использовать её вместо шин AGP и PCI, ожидается, что PCI Express заменит эти шины в персональных компьютерах.

- Шина USB (Universal Serial Bus) была разработана для подключения среднескоростных и низкоскоростных периферийных устройств. Например, скорость обмена информацией по шине USB 2.0 составляет 45 Мбайт/с – 60 Мбайт/сек. К компьютерам, оборудованным шиной USB, можно подключать такие периферийные устройства, как клавиатура, мышь, джойстик, принтер, не выключая питания. Шина USB поддерживает технологию Plug & Play. При подсоединении периферийного устройства его конфигурирование осуществляется автоматически.

- Шина SCSI (Small Computer System Interface) обеспечивает скорость передачи данных до 320 Мбайт/с и предусматривает подключение к одному адаптеру до восьми устройств: винчестеры, приводы CD-ROM, сканеры, фото- и видеокамеры. Существует широкий диапазон версий SCSI, начиная от первой версии SCSI I, обеспечивающей максимальную пропускную способность 5 Мбайт/с, и до версии Ultra 320 с максимальной пропускной способностью 320 Мбайт/сек.

- Шина UDMA (Ultra Direct Memory Access – прямое подключение к памяти). UDMA обеспечивает передачу данных с жесткого диска, со скоростью до 33,3 Мб/сек в режиме 2 и 66,7 Мб/сек в режиме 4.

- Шина IEEE 1394 - это стандарт высокоскоростной локальной последовательной шины, разработанный фирмами Apple и Texas Instruments. Шина IEEE 1394 предназначена для обмена цифровой информацией между ПК и другими электронными устройствами, особенно для подключения жестких дисков и устройств обработки аудио- и видеоинформации, а также работы мультимедийных приложений. Она способна передавать данные со скоростью до 1600 Мбит/сек, работать одновременно с несколькими устройствами, передающими данные с разными скоростями, как и SCSI. Как и USB, шина IEEE 1394 полностью поддерживает технологию Plug & Play, включая возможность установки компонентов без отключения питания ПК. Подключать к компьютеру через интерфейс IEEE 1394 можно практически любые устройства, способные работать с SCSI. К ним относятся все виды накопителей на дисках, включая жесткие, оптические, CD-ROM, DVD, цифровые видеокамеры, устройства записи на магнитную ленту и многие другие периферийные устройства. Благодаря таким широким возможностям, эта шина стала наиболее перспективной для объединения компьютера с бытовой электроникой.

Последовательный и параллельный порты

Такие устройства ввода и вывода, как клавиатура, мышь, монитор и принтер, входят в стандартную комплектацию ПК. Все периферийные устройства ввода должны коммутироваться с ПК таким образом, чтобы данные, вводимые пользователем, могли не только корректно поступать в компьютер, но и в дальнейшем эффективно обрабатываться. Для обмена данными и связи между периферией (устройствами ввода/вывода) и модулем обработки данных (материнской платой) может быть организована параллельная или последовательная передача данных.

Параллельный порт. В ПК, как правило, 2 параллельных порта: LPT1 и LPT2 . К ним можно подключать принтеры и сканеры. В настоящее время LPT порты используются редко, современные принтеры и сканеры в основном подключаются к универсальным USB портам.

Последовательные порты. В ПК, как правило, 4 последовательных порта: COM1 COM4 . Это устаревшие порты, они редко используются в современных ПК. К ним можно подключать: мышь старой конструкции (с механическим шариком) и некоторые другие медленные устройства.

PS/2 – порт для подключения клавиатуры и мыши, получивший в своё время широкое рас­про­стра­не­ние и до сих пор имеющийся во многих современных компьютерах.

Универсальный USBпорт . К USB-портам подключаются разнообразные устройства, от принтеров и сканеров до флэш-накопителей и внешних дисков, а также видеокамеры и веб-камеры, фотоаппараты, телефоны, музыкальные плейеры и пр.

Слоты ПК

Для того, чтобы системная плата могла взаимодействовать с другими, отдельно вставляющимся платами, используются специальные гнезда, которые называются слотами.

Слоты стандарта PCI . PCI – это стандарт не только слота, но и самой шины (канал, по которому передается информация между устройствами компьютера). Уже долгое время слоты PCI служат для подключения внешних устройств (звуковая плата, сетевая карта и др. контроллеры). Слотов PCI на современных платах три, четыре. Найти их очень легко – они самые короткие и обычно белого цвета, разделенные перемычкой на две неравные части. Сегодня слоты PCI сочетаются с новыми слотами PCI-Express (используются для подключения видеокарт).

Слоты стандарта PCI Express. PCI-Express имеет два типа слотов для подключения дополнительных плат:

Короткие PCI-Express x1 (скорость передачи данных – 250 Мб/с)

Длинные PCI-Express x16 (до 4 Гб/с) – для подсоединения видеокарты.

Слоты для установки оперативной памяти – их легко различить среди всех разъемов, они снабжены специальными замочками-защелками. На плате их может быть от двух до четырех, что позволяет установить от 512 Мб до 4 Гб оперативной памяти. Слоты жестко привязаны к типу оперативной памяти, т.е. в слот, предназначенный для памяти DDR2 нельзя вставить память типа DDR3. Иногда на одной системной плате бывает установлено несколько слотов для разных типов памяти.

Служит для обмена командами и данными между компонентами ЭВМ, расположенными на мат. плате. ПУ подключается к шине через контроллеры (открытая архитектура). передача информации по сист. шине осущ-ся по тактам.

Сист. шина включает в себя:

Кодовую шину данных для //-ой передачи всех разрядов числового кода (машинного слова) операнда из ОЗУ в МПП и обратно (64 разряда)

Кодовую шину адреса ячейки ОЗУ (32 разряда)

Кодовую шину инструкций (команд и управляющих сигналов, импульсов) во все блоки ЭВМ (32 разряда)

Шину питания для подключения блоков ЭВМ к системе энергопитания

Сист. шина обеспечивает 3 направления передачи информации: -между МП и ОЗУ; -между МП и контроллером устройств; -между ОЗУ и Внеш Устр-вами (ВЗУ и ПУ, в режиме прямого доступа к памяти)

Все устройства подключаются к сист. шине через контроллеры -- устр-ва, обеспечивающие взаимодействие ВУ и сист. шины.

Для освобождения МП от управления обменом информацией между ОЗУ и ВУ предусмотрен режим Прямого доступа в память (DMA - direct memory access).

Характеристики сист. шины: кол-во обслуживаемых ею устройств и пропускная способность, т.е. макс. возможная скорость передачи информации.

Пропускная способность шины зависит от:

Разрядности шины (или ширины) - кол-во бит, кот. м.б. передано по шине одновременно (сущ-ют 8,16,32, и 64-рязрядные шины);

Тактовой частоты шины - частоты, с кот. передаются биты информации по шине.

Основные характеристики шин:

PCI (Peripheral Component Interconnect) – самая распространенная системная шина. Быстродействие шины не зависит от количества подсоединенных устройств. Поддерживает следующие режимы:

- Plug and Play (PnP ) – автоматическое определение и настройка подключенного к шине устройства;

- Bus Mastering – режим единоличного управления шиной любым устройством, подключенным к шине, что позволяет быстро передать данные по шине и освободить ее.

AGP (Accelerated Graphics Port) – магистраль между видеокартой и ОЗУ. Разработана, так как параметры шины PCI не отвечают требованиям видеоадаптеров по быстродействию. Шина работает на большей частоте, что позволяет ускорить работу графической подсистемы ЭВМ.

Основные характеристики шин

Лекция 5

18. Память эвм и ее характеристики и назначение. Пзу, озу, взу. Организация и физическое представление данных в эвм.

Постоянное и оперативное ЗУ.

ЗУ в ЭВМ состоят из последовательности ячеек, каждая из которых содержит значение 1-ого байта и имеет собственный номер (адрес), по которому происходит обращение к ее содержимому. Все данные в ЭВМ хранятся в двоичном виде (0,1).

ЗУ характеризуется 2-мя параметрами:

Объем памяти - размер в байтах, доступных для хранения информации

Время Доступа к ячейкам памяти - средний временной интервал в течении кот. находится требуемая ячейка памяти и из нее извлекаются данные.

Оперативное запоминающее устройство (ОЗУ; RAM – Random Access Memory) предназначено для оперативной записи, хранения и чтения информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ЭВМ в текущий период времени. После выключения питания ЭВМ, информация в ОЗУ уничтожается. (В ЭВМ на базе процессоров Intel Pentium используется 32-разрядная адресация. Т.е число адресов 2 32 , то есть возможное адресное пространство составляет 4,3 Гбайт. время доступа 0,005-0,02 мкс. 1 с = 10 6 мкс.

Постоянное запоминающее устройство (ПЗУ; ROM – Read Only Memory) хранит неизменяемую (постоянную) информацию: программы, выполняемые во время загрузки системы, и постоянные параметры ЭВМ. В момент включения ЭВМ в его ОЗУ отсутствуют данные, так как ОЗУ не сохраняет данные после выключения ЭВМ. Но МП необходимы команды, в том числе и сразу после включения. Поэтому МП обращается по специальному стартовому адресу, который ему всегда известен, за своей первой командой. Этот адрес из ПЗУ. Основное назначение программ из ПЗУ состоит в том, чтобы проверить состав и работоспособность системы и обеспечить взаимодействие с клавиатурой, монитором, жесткими и гибкими дисками. Обычно изменить информацию ПЗУ нельзя. Объем ПЗУ 128-256 Кбайт, время доступа 0,035-0,1 мкс. Так как объем ПЗУ небольшой, но время доступа больше, чем у ОЗУ, при запуске все содержимое ПЗУ считывается в специально выделенную область ОЗУ.

Энергонезависимая память CMOS RAM (Complementary Metal-Oxide Semiconductor RAM), в которой хранятся данные об аппаратной конфигурации ЭВМ: о подключенных к ЭВМ устройствах и их параметры, параметры загрузки, пароль на вход в систему, текущее время и дата. Питание памяти CMOS RAM осуществляется от батарейки. Если заряд батарейки заканчивается, то настройки, хранящиеся в памяти CMOS RAM, сбрасываются, и ЭВМ использует настройки по умолчанию.

ПЗУ и память CMOS RAM составляют базовую систему ввода-вывода (BIOS – Basic Input-Output System).

Внешние ЗУ. ВЗУ для долговременного хранения и транспортировки информации. ВЗУ взаимодействуют с сист. шиной через контроллеры ВЗУ (КВЗУ). КВЗУ обеспечивают интерфейс ВЗУ и сист. шины в режиме прямого доступа к памяти, т.е. без участия МП. ИНТЕРФЕЙС -- это совокупность связей с унифицированными сигналами и аппаратуры, предназначенной для обмена данными между устройствами вычислительной системы.

ВЗУ можно разделить по критерию транспортировки на ПЕРЕНОСНЫЕ и СТАЦИОНАРНЫЕ. Переносные ВЗУ состоят из носителя, подключ-ого к порту вв/вывода (обычно ЮСБ), (флеш-память) или носителя и привода (накопители на ГМД, приводы СиДи и ДВД). В стационарных ВЗУ носитель и привод объединены в единое устройство (НЖМД). Стационарные ВЗУ предназначены для хранения информации внутри ЭВМ.

Перед первым использованием или в случае сбоев ВЗУ необходимо ОТФОРМАТИРОВАТь - записать на носитель служебную информацию.

Основные Технические Характеристики ВЗУ

Информационная емкость определяет наибольшее кол-во ед. данных, кот может одновременно хранить в ВЗУ (зависит от площади объема носителя и плотности записи.)

Плотность записи - число бит информации, записанных на единице поверхности носителя. Различают продольную плотность (бит/мм), и поперечную плотность.//

Время доступа - интервал времени от момента запроса (чтения или записи) до момента выдачи блока (включая время поиска инфции на носителе и время чтения или записи.)

Скорость передачи данных определяет кол-во данных, считываемых или записываемых в единицу времени и зависит от скорости движения носителя, плотности записи, числа каналов и тп.

"

Знать строение компьютера обычному пользователю совершенно не обязательно. Но если вы хотите считать себя продвинутым пользователем, который без труда справляется с любой поставленной компьютерной задачей, да к тому же собирается в ближайшем будущем самостоятельно собрать свой первый системный блок, то подобные знания просто необходимы.

Функционирование компьютера невозможно без наличия в нем хотя бы одной из перечисленных ниже систем:

  1. Процессора.
  2. Видеоплаты.
  3. Оперативного запоминающего устройства.

Но даже все эти компоненты в совокупности не смогут функционировать. Для этого необходимо организовать между ними связь, посредством которой осуществлялись бы логические и вычислительные операции. Подобные системы связи организуют системные шины компьютера. Поэтому можно сказать, что это еще один незаменимый компонент системного блока.

Системная шина

Системная шина - это совокупность путей передачи данных, которые обеспечивают взаимосвязанную работу между остальными элементами компьютера: процессором, видеоадаптером, жесткими дисками и другими компонентами. Данное устройство состоит из нескольких уровней:

  • механического;
  • электрического или физического;
  • логического и уровня управления.

Первостепенное деление системных шин

Деление шин основывается на нескольких факторах. Первенствующим показателем является месторасположение. Согласно этому показателю шины бывают:

  1. Внутренними, которые обеспечивают взаимосвязь внутренних компонентов системного блока, таких как процессор, ОЗУ, материнская плата. Такая системная шина называется еще локальной, так как служит для связи местных устройств.
  2. Внешними, которые служат для подключения наружных устройств (адаптеров, флеш-накопителей) к материнской плате.

В самом общем случае системной шиной можно назвать любое устройство, которое служит для объединения в одну систему нескольких устройств. Даже сетевые подключения, например, сеть Интернет, в некотором роде является системной шиной.

Самая важная система связи

Вся деятельность, которую мы осуществляем посредством компьютера - создание разнообразных документов, воспроизведение музыки, запуск компьютерных игр - была бы невозможна без процессора. В свою очередь, микропроцессор не смог бы выполнять свою работу, если бы не имел каналов связи с другими важными элементами, такими как ОЗУ, ПЗУ, таймеры и разъема ввода-вывода информации. Именно для обеспечения этой функции в компьютере имеется системная шина процессора.

Быстродействие компьютера

Для функционирования микропроцессора в состав системы каналов связи входит сразу несколько шин. Это шины:


Количество представленных типов системных каналов связи процессора может быть от одного и более. Причем считается, что чем больше шин установлено, тем больше общая производительность компьютера.

Важным показателем, который также затрагивает производительность ПК, является пропускная способность системной шины. Она определяет скорость передачи информации между локальными системами электронно-вычислительной машины. Рассчитать ее довольно просто. Необходимо лишь найти произведение между тактовой частотой и количеством информации, то есть байт, которая передается за один такт. Так, для давно устаревшей шины ISA пропускная способность составит 16 Мбайт/с, для современной шины PCI Express это значение будет находиться на отметке в 533 Мбайт/с.

Виды компьютерных шин

История компьютерной техники насчитывает уже не одно десятилетие. Совместно с развитием новых компонентов разрабатывались и новые типы системных шин. Самым первым таким каналом связи была система ISA. Этот компонент компьютера обеспечивает передачу данных на довольно медленной скорости, но ее достаточно для одновременного функционирования клавиатуры, монитора и некоторых других компонентов.

Несмотря на то что она была изобретена более полувека назад, данная системная шина активно применялась и в настоящее время, уверенно конкурируя с более современными представителями. Это смогло осуществиться благодаря выпуску большого количества расширений, которые увеличивали ее функционал. Лишь в последние годы процессоры стали выпускаться без использования ISA.

Современные системные шины

Шина VESA стала новым словом в области компьютерной техники. Разработанная специально для непосредственного подключения внешних устройств к самому процессору, она и по сей день обладает высокими показателями скорости передачи информации и обеспечивает высокую производительность процессора.

Но подобная система каналов связи не в состоянии обеспечить надлежащее функционирование микропроцессора. Поэтому она внедряется в систему совместно с ISA и выступает в роли еще одного расширения.

Вот и вся краткая справочная информация, которая должна пролить свет на один из важнейших компонентов современных компьютеров. Следует сказать, что здесь представлена лишь малейшая частичка информации о компьютерных шинах. Полным их изучением занимаются в специальных заведениях на протяжении нескольких лет. Подобная детальная информация необходима непосредственно для разработки новых моделей микропроцессоров или для модернизации уже существующих. Шина PCI является ближайшим конкурентом предыдущего представителя каналов передачи данных. Эта системная шина была разработана компанией Intel специально для производства процессоров собственной торговой марки. Данное устройство способно обеспечить еще большую скорость передачи данных и при этом не нуждается в дополнительных элементах, как в предыдущем примере.

Ядро процессора определяется следующими характеристиками:

  • технологический процесс;
  • объем внутреннего кэша L1 и L2;
  • напряжение;
  • теплоотдача.

Перед покупкой центрального процессора, необходимо удостовериться, что выбранная вами материнская плата сможет с ним работать.

Примечательно, что одна линейка процессоров может содержать в себе ЦП, оснащенные разными ядрами. К примеру, в линейке Intel Core i5 имеются процессоры с ядрами Lynnfield, Clarkdale, Arrandale и Sandy Bridge.

Что такое частота шины данных?

Показатель частоты шины данных также обозначается как Front Side Bus (или сокращенно FSB ) .

Шина данных - это набор сигнальных линий, предназначенных для передачи данных в и из процессора.

Частота шины - это тактовая частота, с которой осуществляется обмен данными между процессором и системной шиной.

Следует отметить, что процессоры применяют технологию Quad Pumping. Она дает возможность осуществлять передачу 4 блоков данных за один такт. Эффективная частота шины, при этом, возрастает вчетверо. Следует помнить, что для выше-обозначенных процессоров, в графе "частота шины" указывается увеличенный в 4 раза показатель.

Процессоры компании AMD Athlon 64 и Opteron применяют технологию HyperTransport, которая дает возможность процессору и ОЗУ осуществлять эффективное взаимодействие. Данная система существенно повышает общую производительность.

Что такое тактовая частота процессора?

Тактовая частота процессора - это число операций процессора в секунду. Под операциями, в данном случае, подразумеваются такты. Показатель тактовой частоты пропорционален частоте шины (FSB).

Обычно, чем выше тактовая частота, тем выше производительность. Однако, это правило работает только для моделей процессоров, принадлежащих одной линейке. Почему? В них, на производительность процессора, помимо частоты, оказывают влияние также такие параметры, как:

  • размер кэша второго уровня (L2);
  • присутствие и частота кэша третьего уровня (L3);
  • присутствие специальных инструкций и прочее...

Диапазон тактовой частоты процессора: от 900 до 4200 МГц.

Что такое техпроцесс?

Техпроцесс - это масштаб технологии, определяющей габариты полупроводниковых элементов, составляющих базу внутренних цепей процессора. Цепи образуют соединенные между собой транзисторы.

Пропорциональное сокращение габаритов транзисторов, по мере развития современных технологий, приводит к улучшению характеристик процессоров. К примеру, ядро Willamette, выполненное согласно техпроцессу 0.18 мкм, обладает 42 млн. транзисторов; ядро Prescott с техпроцессом 0.09 мкм, имеет уже 125 млн. транзисторов.

Что такое величина тепловыделения процессора?

Тепловыделение - это показатель отведенной системой охлаждения мощности для обеспечения нормального функционирования процессора. Чем выше значение данного параметра, тем сильнее греется процессор в ходе своей работы.

Данный показатель крайне важно учитывать в случае завышения частоты центрального процессора. Процессор, обладающий низким тепловыделением, охлаждается быстрее, и, соответственно, разогнать его можно сильнее.

Следует также учитывать, что производители процессоров измеряют показатель тепловыделения по-разному. Поэтому сравнение по этой характеристике уместно только в рамках одной компании-производителя.

Диапазон тепловыделения процессора: от 10 до 165 Вт.

Поддержка технологии Virtualization Technology

Virtualization Technology - технология, позволяющая единовременную работу нескольких операционных систем на одном ПК.

Так, благодаря технологии виртуализации, одна компьютерная система может функционировать в виде нескольких виртуальных.

Поддержка технологии SSE4

SSE4 - технология, включающая в себя пакет, состоящий из 54 новых команд, направленных на улучшение показателей производительности процессора в ходе выполнения им различных ресурсоемких задач.

Поддержка технологии SSE3

SSE3 - технология, включающая в себя пакет, состоящий из 13 новых команд. Их введение в новую генерацию направлено на улучшение показателей производительности процессора в части операций потоковой обработки данных.

Поддержка технологии SSE2

SSE2 - технология, включающая в себя пакет команд, дополняющий технологии своих "предшественников": SSE и MMX . Является разработкой корпорации Intel. Включенные в набор команды позволяют добиться существенного прироста производительности в приложениях, оптимизированных под SSE2. Данную технологию поддерживают практически все современные модели процессоров.

Поддержка технологии NX Bit

NX Bit - технология, способная предотвращать внедрение и исполнение вредоносного кода некоторых вирусов.

Поддерживается операционной системой Windows XP SP2, а также всеми 64-битными ОС.

Поддержка технологии HT (Hyper-Threading)

Hyper-Threading - технология, дающая возможность процессору обрабатывать два потока команд параллельно, что существенно повышает эффективность выполнения определенных ресурсоемких приложений, связанных с многозадачностью (редактирование аудио и видео, 3D-моделирование и прочее). Впрочем, в некоторых приложениях применение данной технологии может произвести обратный эффект. Так, технология Hyper-Threading имеет опциональный характер, и в случае необходимости, пользователь может в любое время отключить ее. Автором разработки является компания Intel.

Поддержка технологии AMD64/EM64T

Процессоры, построенные на 64-битной архитектуре, могут работать как с 32-битными приложениями, так и с 64-битными, причем, с абсолютно одинаковой эффективностью.

Примеры линеек x-64 процессоров: AMD Athlon 64, AMD Opteron, Core 2 Duo, Intel Xeon 64 и другие.

Минимальный объем оперативной памяти для процессоров, поддерживающих 64-битную адресацию, составляет 4 Гб . Такие параметры недоступны для традиционных 32-битных процессоров. Чтобы активировать работу 64-битных процессоров, необходимо, чтобы операционная система была под них адаптирована, то есть, тоже имела x64-архитектуру.

Названия реализации 64-битных расширений в процессорах:

  • Intel - EM64T .
Поддержка технологии 3DNow!

3DNow! - технология, вмещающая в себя пакет, состоящий из 21 дополнительной команды для обработки мультимедиа. Главной целью данной технологии является улучшение процесса обработки мультимедийных приложений.

Технология 3DNow! реализована исключительно в процессорах компании AMD.

Что такое объем кэша L3?

Под объемом кэша L3 подразумевается кэш-память третьего уровня.

Оснащаясь быстродействующей системной шиной, кэш-память L3 образует высокоскоростной канал для обмена данными с системной памятью.

Обычно, кэш-памятью L3 комплектуются лишь топовые процессоры и серверные системы. К примеру, такие линейки процессоров, как AMD Opteron, AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon.

Диапазон объема кэша L3: от 0 до 30720 Кб.

Что такое объем кэша L2?

Под объемом кэша L2 подразумевается кэш-память второго уровня.

Кэш-память второго уровня представляет собой блок высокоскоростной памяти, выполняющий аналогичные кэшу L1 функции. Данный блок обладает более низкой скоростью, а также отличается бóльшим объемом.

Если пользователю необходим процессор для выполнения ресурсоемких задач, то следует выбирать модель с большим объемом кэша L2.

В моделях процессоров, обладающих несколькими ядрами, указывается общий объем кэш-памяти второго уровня.

Диапазон объема кэша L2: от 128 до 16384 Кб.

Что такое объем кэша L1?

Под объемом кэша L1 подразумевается кэш-память первого уровня.

Кэш-память первого уровня представляет собой блок высокоскоростной памяти, находящийся непосредственно на ядре процессора. В этот блок производится копирование извлеченных из оперативной памяти данных. Обработка данных из кэша осуществляется в разы быстрее, чем обработка данных из оперативной памяти.

Кэш память дает возможность повысить производительность процессора за счет более высокой скорости обработки данных. Кэш-память первого уровня исчисляется килобайтами, она довольно небольшая. Как правило, "старшие" модели процессоров оснащены кэш-памятью L1 большего объема.

В моделях процессоров, обладающих несколькими ядрами, объем кэш-памяти первого уровня указывается всегда для одного ядра.

Диапазон объемов кэша L1: от 8 до 128 Кб.

Номинальное напряжение питания ядра процессора

Данный параметр обозначает напряжение, необходимое процессору для его работы. Им характеризуется энергопотребление процессора. Этот параметр особенно важно учитывать при выборе процессора для мобильной и нестационарной системы.

Единица измерения - Вольты.

Диапазон напряжения ядра: от 0.45 до 1.75 В.

Максимальная рабочая температура

Это показатель максимально допустимой температуры поверхности процессора, при которой возможна его работа. Температура поверхности зависит от загруженности процессора, а также от качества теплоотвода.

  • При нормальном охлаждении, температура процессора находится в диапазоне 25-40°C (холостой режим);
  • При большой загруженности температура может достигать 60-70 °C.

Процессоры с высокой рабочей температурой требуют установки мощных систем охлаждения.

Диапазон максимальной рабочей температуры процессора: от 54.8 до 105.0 °C.

Что такое линейка процессора?

Каждый процессор относится к определенному модельному ряду или линейке. В рамках одной линейки, процессоры могут серьезно отличаться друг от друга по целому ряду характеристик. Каждый производитель имеет линейку недорогих процессоров. Скажем, у Intel это Celeron и Core Solo; у AMD - Sempron .

Процессоры бюджетных линеек, в отличие от более дорогих "собратьев", не имеют некоторых функций, а их параметры - обладают меньшими значениями. Так, в недорогих процессорах может быть существенно уменьшенная кэш-память, более того, она может и вовсе отсутствовать.

Бюджетные линейки процессоров подходят для офисных компьютеров, не предполагающих работы с большими нагрузками и масштабными задачами. Более ресурсоемкие задачи (обработка видео /аудио) требуют установки "старших" линеек. К примеру, Core 2 Duo, Core 2 Quad, Core i3, Core i5, Core i7, Phenom X3, Phenom X4, Phenom II X4, Phenom II X6 и т.д.

Серверные материнские платы, обычно, используют специализированные линейки процессоров: Opteron , Xeon и им подобные.

Что такое коэффициент умножения процессора?

На основании коэффициента умножения процессора осуществляется подсчет итоговой тактовой частоты его работы.

Тактовая частота процессора = частота шины (FSB) * коэффициент умножения.

К примеру, частота шины (FSB) составляет 533 Mhz, а коэффициент умножения - 4.5. Так, 533*4.5= 2398,5 Mгц. Получаем тактовую частоту работы процессора.

В большинстве современных процессоров этот параметр заблокирован на уровне ядра, он не подлежит изменению.

Следует также отметить, что процессоры типа Intel Pentium 4, Pentium M, Pentium D, Pentium EE, Xeon, Core и Core 2 применяют технологию Quad Pumping (передача 4-х блоков данных за один такт). В данном случае, эффективная частота шины возрастает, соответственно, в 4 раза. В поле "Частота шины", в случае с выше-приведенными процессорами, указывается увеличенная в четыре раза частота шины. Чтобы получить показатель физической частоты шины, необходимо эффективную частоту разделить на 4.

Диапазон коэффициента умножения: от 6.0 до 37.0.

Число ядер в процессоре

Современные технологии производства процессоров позволяют размещать несколько ядер в одном корпусе. Чем больше ядер имеет процессор, тем выше его производительность. К примеру, в серии Core 2 Duo применяются 2-ядерные процессоры, а в линейке Core 2 Quad - 4-ядерные.

Диапазон количества ядер в процессоре: от 1 до 16.

Что такое Socket (сокет)?

Каждая материнская плата оснащена разъемом определенного типа, предназначенным для установки процессора. Этот разъем и называется сокетом. Обычно, тип сокета определяется числом ножек, а также компанией-производителем процессора. Различные сокеты соответствуют различным типам процессоров.

В настоящее время, производители процессоров применяют следующие типы сокетов:

Intel

  • LGA1155;
  • LGA2011.

AMD

  • AM3+;
  • FM1.
Температура процессора постепенно растет со временем.Какие меры наиболее эффективны для снижения температуры процессора?

В зависимости от условий эксплуатации техники, часто возникает ситуация что радиаторы и забиваются пылью, грязью, термоинтерфейс изменяет свои свойства теплопроводности, крепления радиатора слабеют, иногда не равномерно.

В этом случае, необходимо, при подозрении на перегрев, снять систему охлаждения, отчистить радиаторы, поправить крепления, заменить термопасту.Также снизить температуру в корпусе, сменить вентилятор процессорного кулера на более мощный или, если конструкция позволяет, сменить кулер, добавить корпусный кулер на вдув и\или на выдув.

Как определить, что термозащита в действии?

Существует два способа. Первый - программный. Запускаем TAT (Intel Thermal Analysis Tool) для процессоров семейства Core, RMClock для всех остальных и следите за сообщениями в TAT и за графиком во второй. Как только сработает термозащита, TAT выдаст предупреждение, а в мониторинге RMClock появится график CPU Throttle.

Второй способ - опосредованный. Основан на том, что включение термозащиты, особенно
троттлинга, обязательно сопровождается сильным падением производительности процессора.

Температура первого ядра в Х-ядерном процессоре выше на несколько °C, по сравнению со вторым. Чем это объяснить?

Это нормально. Ядро, использующееся в первую очередь, загружено типично больше, поэтому
и нагревается соответственно больше.

Здравствуйте, уважаемые читатели блога сайт. Очень часто на просторах интернета можно встретить много всякой компьютерной терминологии, в частности - такое понятие, как "Системная шина". Но мало кто знает, что именно означает этот компьютерный термин. Думаю, сегодняшняя статья поможет внести ясность.

Системная шина (магистраль) включает в себя шину данных, адреса и управления. По каждой их них передается своя информация: по шине данных - данные, адреса - соответственно, адрес (устройств и ячеек памяти), управления - управляющие сигналы для устройств. Но мы сейчас не будем углубляться в дебри теории организации архитектуры компьютера, оставим это студентам ВУЗов. Физически магистраль представлена в виде (контактов) на материнской плате.

Я не случайно на фотографии к этой статье указал на надпись "FSB". Дело в том, что за соединение процессора с чипсетом отвечает как раз шина FSB, которая расшифровывается как "Front-side bus" - то есть "передняя" или "системная". И, на который обычно ориентируются при разгоне процессора, например.

Существует несколько разновидностей шины FSB, например, на материнских платах с процессорами Intel шина FSB обычно имеет разновидность QPB, в которой данные передаются 4 раза за один такт. Если речь идет о процессорах AMD, то там данные передаются 2 раза за такт, а разновидность шины имеет название EV6. А в последних моделях CPU AMD, так и вовсе - нет FSB, ее роль выполняет новейшая HyperTransport.

Итак, между и центральным процессором данные передаются с частотой, превышающей частоту шины FSB в 4 раза. Почему только в 4 раза, см. абзац выше. Получается, если на коробке указано 1600 МГц (эффективная частота), в реальности частота будет составлять 400 МГц (фактическая). В дальнейшем, когда речь пойдет о разгоне процессора (в следующих статьях), вы узнаете, почему необходимо обращать внимание на этот параметр. А пока просто запомните, чем больше значение частоты, тем лучше.

Кстати, надпись "O.C." означает, буквально "разгон", это сокращение от англ. Overclock, то есть это предельно возможная частота системной шины, которую поддерживает материнская плата. Системная шина может спокойно функционировать и на частоте, существенно ниже той, что указана на упаковке, но никак не выше нее.

Вторым параметром, характеризующим системную шину, является. Это то количество информации (данных), которая она может пропустить через себя за одну секунду. Она измеряется в Бит/с. Пропускную способность можно самостоятельно рассчитать по очень простой формуле: частоту шины (FSB) * разрядность шины. Про первый множитель вы уже знаете, второй множитель соответствует разрядности процессора - помните, x64, x86(32)? Все современные процессоры уже имеют разрядность 64 бита.

Итак, подставляем наши данные в формулу, в итоге получается: 1600 * 64 = 102 400 МБит/с = 100 ГБит/с = 12,5 ГБайт/с. Такова пропускная способность магистрали между чипсетом и процессором, а точнее, между северным мостом и процессором. То есть системная, FSB, процессорная шины - все это синонимы . Все разъемы материнской платы - видеокарта, жесткий диск, оперативная память "общаются" между собой только через магистрали. Но FSB не единственная на материнской плате, хотя и самая главная, безусловно.

Как видно из рисунка, Front-side bus (самая жирная линия) по-сути соединяет только процессор и чипсет, а уже от чипсета идет несколько разных шин в других направлениях: PCI, видеоадаптера, ОЗУ, USB. И совсем не факт, что рабочие частоты этих подшин должны быть равны или кратны частоте FSB, нет, они могут быть абсолютно разные. Однако, в современных процессорах часто контроллер ОЗУ перемещается из северного моста в сам процессор, в таком случае получается, что отдельной магистрали ОЗУ как бы не существует, все данные между процессором и оперативной памятью передаются по FSB напрямую с частотой, равной частоте FSB.

Пока что это все, спасибо.



Статьи по теме