Трёхфазная система электроснабжения. Чем трехфазное напряжение отличается от однофазного

Итак, почему в некоторые электрощитки приходит напряжение 380 В, а в некоторые – 220? Почему у одних потребителей напряжение трёхфазное, а у других – однофазное? Было время, я задавался этими вопросами и искал на них ответы. Сейчас расскажу популярно, без формул и диаграмм, которыми изобилуют учебники.

Другими словами. Если к потребителю подходит одна фаза, то потребитель называется однофазным, и напряжение его питания будет 220 В (фазное). Если говорят о трехфазном напряжении, то всегда идёт речь о напряжении 380 В (линейное). Какая разница? Далее – подробнее.

Чем три фазы отличаются от одной?

В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я , это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.

Напряжения в трёхфазной системе

Так получается, потому что напряжения (при активной нагрузке, и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.

Подробнее можно ознакомиться в учебнике электротехники – про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.

Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.

Кроме того, чрезмерно нагруженной фазе будет тяжело и обидно, что другие “отдыхают”)

Преимущества и недостатки

Обе системы питания имеют свои плюсы и минусы, которые меняются местами или становятся несущественными при переходе мощности через порог 10 кВт. Попробую перечислить.

Однофазная сеть 220 В, плюсы

  • Простота
  • Дешевизна
  • Ниже опасное напряжение

Однофазная сеть 220 В, минусы

  • Ограниченная мощность потребителя

Трехфазная сеть 380 В, плюсы

  • Мощность ограничена только сечением проводов
  • Экономия при трехфазном потреблении
  • Питание промышленного оборудования
  • Возможность переключения однофазной нагрузки на “хорошую” фазу при ухудшении качества или пропадании питания

Трехфазная сеть 380 В, минусы

Когда 380, а когда 220?

Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) проводник. В 99% квартир и домов именно так и происходит.

Однофазный электрощиток в доме. Правый автомат – вводной, далее – по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток – одна сплошная ошибка…

Однако, если планируется потреблять мощность более 10 кВт, то лучше – трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее ), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.

Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.

Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого – не более 40 А.

Про выбор защитного автомата я уже . А про выбор сечения провода – . Там же – жаркие обсуждения вопросов.

Но если мощность потребителя – 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.

Например, 15 кВт – это для одной фазы около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.

Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

И на вводе (перед счетчиком) стоят примерно такие “ящички”:

Трехфазный ввод. Вводной автомат перед счетчиком.

Существенный минус трехфазного ввод а (отмечал его выше) – ограничение по мощности однофазных нагрузок. Например, выделенная мощность трехфазного напряжения – 15 кВт. Это значит, что по каждой фазе – максимум 5 кВт. А это значит, что максимальный ток по каждой фазе – не более 22 А (практически – 25). И надо крутиться, распределяя нагрузку.

Надеюсь, теперь понятно, что такое трехфазное напряжение 380 В и однофазное напряжение 220 В?

Схемы Звезда и Треугольник в трехфазной сети

Существуют различные вариации включения нагрузки с рабочим напряжением 220 и 380 Вольт в трехфазную сеть. Эти схемы называются “Звезда” и “Треугольник”.

Когда нагрузка рассчитана на напряжение 220В, то она включается в трехфазную сеть по схеме “Звезда” , то есть к фазному напряжению. При этом все группы нагрузки распределяются так, чтобы мощности по фазам были примерно одинаковы. Нули всех групп соединены вместе и подключены к нейтральному проводу трехфазного ввода.

В “Звезду” подключены все наши квартиры и дома с однофазным вводом, другой пример – подключение ТЭНов в мощных и .

Когда нагрузка на напряжение 380В, то она включается по схеме “Треугольник”, то есть к линейному напряжению. Такое распределение по фазам наиболее типично для электродвигателей и другой нагрузки, где все три части нагрузки принадлежат к единому устройству.

Система распределения электроэнергии

Исходно напряжение всегда является трехфазным. Под “исходно” я подразумеваю генератор на электростанции (тепловой, газовой, атомной), с которого напряжение в много тысяч вольт поступает на понижающие трансформаторы, которые образуют несколько ступеней напряжения. Последний трансформатор понижает напряжение до уровня 0,4 кВ и подаёт его конечным потребителям – нам с вами, в квартирные дома и в частный жилой сектор.

Далее напряжение поступает на трансформатор ТП2 второй ступени, на выходе которого действует напряжение конечного потребителя 0,4 кВ (380В). Мощность трансформаторов ТП2 – от сотен до тысяч кВт. С ТП2 напряжение поступает к нам – на несколько многоквартирных домов, на частный сектор, и т.п.

Схема упрощённая, ступеней может быть несколько, напряжения и мощности могут быть другие, но суть от этого не меняется. Только конечное напряжение потребителей одно – 380 В.

Фото

Напоследок – ещё несколько фото с комментариями.

Электрощит с трехфазным вводом, но все потребители – однофазные.

Друзья, на сегодня всё, всем удачи!

Жду отзывов и вопросов в комментариях!

У новичков в мире электрики и домовладельцев иногда возникает вопрос: что такое в бытовой электропроводке. Связано это с необходимостью починить какой-либо электроприбор.

В возникшей ситуации наиболее приоритетной задачей мастера должно стать соблюдение правил техники безопасности, а не проявление прикладных навыков и умений. Знание элементарных законов функционирования тока и процессов, проходящих внутри бытовых электроприборов не только поможет справиться с большинством неисправностей, возникающих в них, но и сделает этот процесс наиболее безопасным.

Конструкторы и инженеры делают все возможное, чтобы предотвратить несчастный случай при работе с электричеством в быту. Задача потребителя сводится к соблюдению предписанных норм.

  • однофазный ток;
  • двухфазный ток;
  • трехфазный ток.

Однофазный ток.

Переменный ток, который получают при помощи вращения в магнитном потоке проводника или системы проводников, соединенных в одну катушку, называется однофазным переменным током .

Как правило, для передачи однофазного тока используют 2 провода. Называются они фазным и нулевым соответственно. Напряжение между этими проводами составляет 220 В.

Однофазное электропитание . Однофазный ток можно подвести к потребителю двумя различными способами: 2-проводным и 3-проводным. При первом (двухпроводном), для подведения однофазного тока используют два провода. По одному протекает фазный ток, другой предназначен для нулевого провода. Таким образом электропитание подведено почти во все, построенные в бывшем СССР, дома. При втором способе для подведения однофазного тока — добавляют ещё один провод. Называется такой провод заземлением (РЕ). Он предназначен для предотвращения поражения человека электрическим током, а так же для отвода токов утечки и предотвращения приборов от поломки.

Двухфазный ток.

Двухфазным электрическим током называется совокупность двух однофазных токов, сдвинутых по фазе относительно друг друга на угол Pi2 или на 90 °.

Наглядный пример образования двухфазного тока . Возьмем две катушки индуктивности и расположим их в пространстве таким образом, чтобы их оси были взаимно перпендикулярны, после чего запитаем систему катушек двухфазным током , как результат получим в системе два магнитных потока. Вектор результирующего магнитного поля будет вращаться с постоянной угловой скоростью, как следствие, возникает вращающееся магнитное поле. Ротор с обмотками, изготовленными в виде короткозамкнутого «беличьего колеса» или представляющий собой металлический цилиндр на валу, будет вращаться, приводя в движение механизмы.

Передают двухфазные токи при помощи двух проводов: двумя фазными и двумя нулевыми.

Трехфазный ток.

Трехфазной системой электрических цепей называется система, которая состоит из трех цепей, в которых действуют переменные, ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода(φ=2π/3). Каждую отдельную цепь такой системы коротко называют ее фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют просто трехфазным током. Трехфазный ток легко передаётся на дальние расстояния. Любая пара фазных проводов имеет напряжение 380 В. Пара - фазный провод и нуль — имеет напряжение 220 В.

Распределение трёхфазного тока по жилым домам выполняется двумя способами: 4-проводным и 5-проводным. Четырёхпроводное подключение выполняется тремя фазными и одним нулевым проводом. После распределительного щита для питания розеток и выключателей используют два провода — одну из фаз и нуль. Напряжение между этими проводами будет составлять 220В.

Пятипроводное подключение трехфазного тока — в схему добавляется защитный, заземляющий провод (РЕ). В трёхфазной сети фазы должны нагружаться максимально равномерно, в противном случае может произойти перекос фаз. От того, какая электропроводка используется в доме, зависит какое электрооборудование можно в неё включать. К примеру, заземление обязательно, если в сеть включаются приборы с большой мощностью — холодильники, печи, обогреватели, электронные бытовые приборы — компьютеры, телевизоры, устройства, связанные с водой — джакузи, душевые кабины (вода проводник тока). Трехфазный ток необходим для электропитания двигателей (актуальных для частного дома).

Устройство бытовой электропроводки.

Вначале электроэнергия вырабатывается на электростанции. Затем через промышленную электросеть она попадает на трансформаторную подстанцию, где напряжение преобразуется в 380 вольт. Соединение вторичных обмоток понижающего трансформатора выполнено по схеме «звезда»: три контакта подключены к общей точке «0», а три оставшихся присоединены к клеммам «A», «B» и «C» соответственно. Для наглядности приводится картинка.

Объединенные контакты «0» подсоединяются к заземлительному контуру подстанции. Также здесь ноль расщепляется на:

  • Рабочий ноль (на картинке изображен синим)
  • PE-проводник, выполняющий защитную функцию (линия желто-зеленого цвета)

Нули и фазы тока с выхода понижающего трансформатора подводятся к распределительному щитку жилого дома. Полученная трехфазная система разводится по щиткам в подъездах. В конечном итоге, в квартиру попадает фазовое напряжение 220 В и проводник PE, выполняющий защитную функцию.

Итак, что же такое и ноль ? Нулем называют проводник тока, присоединенный к заземлительному контуру понижающего трансформатора и служащий для создания нагрузки от фазы тока, подсоединенной к противоположному концу обмотки трансформатора. Кроме того, существует так называемый «защитный ноль» - это PE-контакт, описанный ранее. Он служит для отвода токов при возникновении технической неисправности в цепи.

Этот метод подключения жилых домов к городской электросети отработан десятилетиями, но все же он не идеален. Иногда в вышеописанной системе появляются неисправности. Чаще всего, они связаны с низким качеством соединения на определенном участке цепи или полным обрывом электрического провода.

Что происходит в нуле и фазе при обрыве провода.

Обрыв электрического провода часто обусловлен элементарной рассеянностью мастера - забыть присоединить к определенному прибору в доме фазу тока или ноль - проще простого. Кроме того, нередки случаи отгорания нуля на подъездном щитке в связи с высокой нагрузкой на систему.

В случае обрыва соединения любого электроприбора в доме со щитком, этот прибор перестает работать - ведь цепь не замкнута. При этом не имеет значения, какой именно провод разорван - ноль или .

Аналогичная ситуация происходит, когда разрыв наблюдается между распределительным щитком многоквартирного дома и щитом конкретного подъезда - все квартиры, подключенные к щиту подъезда , окажутся обесточены.

Вышеописанные ситуации не вызывают серьезных сложностей и не представляют опасности. Они связаны с обрывом лишь одного проводника и не несут в себе угрозы безопасности электроприборов или людей, находящихся в квартире.

Самая опасная ситуация - исчезновение соединения между заземлительным контуром подстанции и средней точкой, к которой подключена нагрузка внутридомового электрощита.

В этом случае электрический ток пойдет по контурам AB, BC, CA, а общее напряжение на этих контурах - 380 В. В связи с этим возникнет очень неприятная и опасная ситуация - на одном электрощитке может вовсе не быть напряжения, так как хозяин квартиры посчитал нужным отключить электроприборы, а на другом возникнет высокое напряжение близкое к 380 вольтам. Это вызовет выход из строя большинства электроприборов, ведь номинальное напряжение работы для них - 240 вольт.

Конечно, такие ситуации можно предотвратить - существуют достаточно дорогостоящие решения для защиты от скачков напряжения. Некоторые производитель встраивают их в свои приборы.

Как определить ноль и фазу собственными силами.

Для определения нуля и фазы тока существуют специальные отвертки-тестеры.

Она работает по принципу прохождения тока низкого напряжения через тело человека, использующего ее. Отвертка состоит из следующих частей:

  • Наконечник для подключения к фазовому потенциалу розетки;
  • Резистор, снижающий амплитуду электротока до безопасных пределов;
  • Светодиод, загорающийся при наличии потенциала фазы тока в цепи;
  • Плоский контакт для создания цепи сквозь тело оператора.

Принцип работы с отверткой-тестером показан на картинке ниже.

Кроме тестовых отверток, существуют и другие способы определить, к какому контакту розетки подключена , а к какому - ноль. Некоторые электрики предпочитают пользоваться более точным тестером, используя его в режиме вольтметра.

Показания стрелки вольтметра означают:

1. Наличие напряжения 220 В между фазой и нулем

2. Отсутствие напряжения между землей и нулем

3. Отсутствие напряжения между фазой и нулем

Вообще-то, в последнем случае стрелка должна показывать 220 В, но в данном конкретном случае центральный контакт розетки не подключен к потенциалу земли.

  • " onclick="window.open(this.href," win2 return false >Печать
  • E-mail
Подробности Категория: Электротехника

Трехфазная система переменного тока

Электростанции вырабатывают трехфазный переменный ток . Генератор трехфазного тока представляет собой как бы три объединенных вместе генератора переменного тока, работающих так, чтобы сила тока (и напряжение) изменялась у них не одновременно, а с отставанием на 1/3 периода. Это осуществляется за счет смещения катушек генераторов на 120° одна относительно другой (рис. справа).


Каждая часть обмотки генератора называется
фазой . Поэтому генераторы, которые имеют обмотку, состоящую из трех частей, называют трехфазными .

Следует отметить, что термин «фаза » в электротехнике имеет два значения: 1) как величина, которая совместно с амплитудой определяет состояние колебательного процесса в данный момент времени; 2) в смысле наименования части электрической цепи переменного тока (например, часть обмотки электрической машины).

Некоторое наглядное представление о возникновении трехфазного тока дает установка, изображенная на рис. слева.
Три катушки от школьного разборного трансформатора с сердечниками размещаются по окружности под углом 120° по отношению друг к другу. Каждая катушка соединена с демонстрационным гальванометром . В центре окружности на оси укрепляется прямой магнит. Если вращать магнит, то в каждой из трех цепей «катушка - гальванометр» возникает переменный ток. При медленном вращении магнита можно заметить, что наибольшее и наименьшее значения токов и их направления будут в каждый момент во всех трех цепях различными.

Таким образом, трехфазный ток представляет совместное действие трех переменных токов одинаковой частоты, но сдвинутых по фазе на 1/3 периода относительно друг друга.
Каждая обмотка генератора может соединяться со своим потребителем, образуя несвязанную трехфазную систему. Выигрыша от такого соединения нет никакого по отношению к трем отдельным генераторам переменного тока, так как передача электрической энергии осуществляется с помощью шести проводов (рис. справа).


На практике получили два других способа соединения обмоток трехфазного генератора. Первый способ соединения получил название звезды (рис. слева, а), а второй - треугольника (рис. б).

При соединении звездой концы (или начала) всех трех фаз соединяются в один общий узел, а от начал (или концов) идут провода к потребителям. Эти провода называются линейными проводами . Общую точку, в которой соединяются концы фаз генератора (или потребителя), называют нулевой точкой , или нейтралью . Провод, соединяющий нулевые точки генератора и потребителя, называют нулевым проводом . Нулевой провод применяется в том случае, если в сети создается неравномерная нагрузка на фазы. Он позволяет уравнять напряжения в фазах потребителя.


Нулевой провод , как правило, применяется в осветительных сетях. Даже при наличии одинакового количества ламп равной мощности во всех трех фазах равномерная нагрузка не сохраняется, так как лампы могут включаться, выключаться не одновременно во всех фазах, могут перегорать, и тогда равномерность нагрузки фаз будет нарушена. Поэтому для осветительной сети применяется соединение в звезду, которая имеет четыре провода (рис. справа) вместо шести при несвязанной трехфазной системе.

При соединении в звезду различают два вида напряжения: фазное и линейное . Напряжение между каждым линейным и нулевым проводом равно напряжению между зажимами соответствующей фазы генератора и называется фазным (U ф ), а напряжение между двумя линейными проводами - линейным напряжением (U л ).

Между фазными и линейными напряжениями можно установить соотношение:

U л = √3 . U ф ≈ 1,73 . U ф ,

если рассмотреть треугольник напряжения (рис. слева).

Действительно,

Ил= ^ч-Т^-г-Т^-сойШ^ Сф-л/2 + 2-со5б0° = л/3 -Ц,

На практике широкое распространение получили трехфазные цепи с нейтральными проводами при напряжениях U Л = 380 В; U Ф = 220 В.

Поскольку в нулевом проводе при симметричной нагрузке сила тока равна нулю, то ток в линейном проводе равен току в фазе.
При неравномерной нагрузке фаз по нулевому проводу проходит уравнительный ток относительно малой величины. Поэтому сечение этого провода должно быть значительно меньше, чем у линейного провода. В этом можно убедиться, если включить четыре амперметра в линейные и нулевой провода. В качестве нагрузки удобно использовать обычные электрические лампочки (рис. справа).

При одинаковой нагрузке в фазах ток в нулевом проводе равен нулю и надобность в этом проводе отпадает (например, равномерную нагрузку создают электродвигатели). В этом случае производят соединение в «треугольник», которое представляет собой последовательное соединение друг с другом начал и концов катушек генератора. Нулевой провод в этом случае отсутствует.
При соединении обмоток генератора и потребителей «треугольником » фазные и линейные напряжения равны между собой,
т.е. U Л = U Ф , а линейный ток в √3 раз больше фазного тока I Л = √3 . I Ф

Соединение треугольником применяется как при осветительной, так и при силовой нагрузке. Например, в школьной мастерской станки можно включать в звезду или треугольник. Выбор того или иного способа соединения определяется величиной напряжения сети и номинальным напряжением приемников электрической энергии.
Принципиально можно соединять треугольником и фазы генератора, но обычно этого не делают. Дело в том, что для создания заданного линейного напряжения каждая фаза генератора при соединении треугольником должна быть рассчитана на напряжение, в раз большее, чем в случае соединения звездой. Более высокое напряжение в фазе генератора требует увеличения числа витков и усиленной изоляции для обмоточного провода, что увеличивает размеры и стоимость машин. Поэтому фазы трехфазных генераторов почти всегда соединяют звездой. Двигатели же иногда в момент пуска включают звездой, а затем переключают на треугольник.

Трёхфазное напряжение – это система электрического питания, где используются три фазные линии, со сдвигом по фазе 120 градусов. Это обеспечивает равномерные условия для многих приложений, повышается эффективность.

Возникновение концепции трёхфазного напряжения

Отцом трёхфазного напряжения считают Доливо-Добровольского в России и Николу Теслу – в остальном мире. События, относящиеся к эпохе возникновения предмета спора, происходили в 80-е годы XIX века. Никола Тесла продемонстрировал первый двухфазный двигатель, работая на компанию, где налаживал электрические установки разнообразного назначения. Заинтересованность явлением электризации шерсти домашнего кота привела учёного к великим открытиям. Прогуливаясь в парке с приятелем, Никола Тесла осознал, что сумеет реализовать на практике теорию Араго о вращающемся магнитном поле, причём понадобятся:

  1. Две фазы.
  2. Сдвиг между ними на угол 90 градусов.

Чтобы показать великое значение открытия, заметим, что трансформатор Яблочкова в указанное время не обрел массовой известности, а опыты Фарадея по магнитной индукции благополучно забыли, записав лишь формулу закона. Мир не хотел знать про:

  • переменный ток;
  • фазу;
  • реактивная мощность.

Генераторы (альтернаторы) и динамо спрямляли напряжение при помощи механического коммутатора. Подобным образом прозябала вся скудная на тот момент отрасль электричества. Эдисон лишь начинал изобретать, никто пока толком не знал про . Кстати, в РФ считают, что устройство изобрёл Лодыгин.

Идея Теслы выглядела революционной, неизвестным оставалось, как получить две фазы с заданным межфазным сдвигом. Молодого учёного мало интересовал вопрос. Он читал про обратимость электрических машин и излучал уверенность, что легко построит генератор, соответствующим образом расположив обмотки. По приводу затруднений не возникало. На начало 80-х годов активно использовался пар, демонстрационную модель предполагалось питать от динамо.

Тесла не задавался необходимостью получить определённую частоту. Исследования не проводились, требовалось просто заставить ротор вращаться. Идея реализовалась через токосъёмные кольца. На тот момент коллекторные двигатели постоянного тока снабжались подобными контактами, вывод Теслы неудивителен. Интереснее объяснить выбор количества фаз.

Преимущество трёх фаз

экспериментаторы в голос утверждают о преимуществе трёх фаз перед двумя, но требуется объяснение. Сразу лезут в голову мысли про КПД, вращающий момент и прочее. Но Тесла рисовал в блокнотике сотни конструкций, очевидно, сумел бы расставить полюса, чтобы добиться нужных параметров. Вывод – дело не в конструкции приборов.

Сейчас напряжение 380 В передаётся лишь по трём проводам. Этого нельзя было добиться в первоначальном варианте Николы Теслы. В 1883 году Эдисон массу сил потратил на попытки использовать трёхжильный провод. Очевидно, слышал о демонстрации, устроенной Николой Теслой, и понял опасность ситуации. В цивилизованном мире основную прибыль получает владелец патента, зачем известному изобретателю вытаскивать на свет способного инженера?

Логика Эдисона проста: пользователи увидят, что трёхжильные кабели более дешёвые, нежели четырёхжильные, и откажутся от использования новинок Николы Теслы. Несложно догадаться, что хитроумный план изобретателя цоколя для лампочек накала провалился. И с треском. А виной стал… Доливо-Добровольский. Система Николы Теслы для создания двух фаз требовала наличия четырёх проводов. Одновременно Доливо-Добровольский предлагал передать больше энергии посредством трёх.

Дело здесь в симметрии. Линейные напряжения 380 В в каждый момент оставляют альтернативу для выбора. К примеру, ток с первой фазы способен утечь на вторую или третью. В зависимости от присутствия подходящего потенциала. В результате получается баланс. Если объединить две фазы системы Николы Тесла, получится винегрет. Как следствие, нейтраль в системе Доливо-Добровольского допустимо убрать, если нагрузка симметричная — как часто происходит на практике.

В результате между проводами получается больший вольтаж, что снижает по каждому проходящий ток при прежней мощности. Причём удаётся порой использовать лишь три линии, сказанное касается большинства предприятий. Очевидны выгоды и при создании местных подстанций: нейтраль вторичной обмотки заземляется тут же, не нужно тянуть лишний провод от гидроэлектростанции. Указанные причины стали преимуществами сетей трёхфазного напряжения, сегодня доминирующие. Провода Теслы легко модернизируются на три фазы.

Причина проигрыша Эдисона

Часто встречается мнение, что система Теслы оказалась лучше, поэтому Эдисон проиграл. Сложно сказать, сколько долларов потерял последний, но Николу обвёл по современным меркам на 4,5 млн. долларов. Инфляция! Авторы склонны считать, что Эдисон получил своё. Никола Тесла умел доказать преимущества постоянного тока. К примеру, последний меньше склонен коронировать на проводах, амплитуда не содержит резких выбросов.

Сегодня доказано, что постоянный ток на дальние расстояния передавать выгоднее. Это исключает из рассмотрения реактивные сопротивления сети – индуктивность и ёмкость. Что значительно снижает нестабильную реактивную мощность. XXI век способен стать вторым рождением постоянного тока для передачи его на дальние расстояния. Но смех вызывает неумение Эдисона передавать энергию. Тесла вправе был помочь, тогда приборы постоянного тока сегодня использовались бы наравне с потребителями переменного. Для коллекторных двигателей это лучше – растут КПД и крутящий момент.

Выходит, постоянный ток выгодно передавать. Эдисон попросту не смог найти правильного решения, пытался взять задачу нахрапом, не погружаясь в тылы. Эдисон был чистым практиком и не умел найти столь ухищрённых решений, как преобразователи. А ведь все генераторы середины XIX века имели встроенный коммутатор для спрямления. Оставалось лишь подключить к линии, а на приёмной стороне провести преобразование. И все! Никола блестяще наказал Эдисона, доказывая наличие в мире некой силы, управляющей ходом истории.

переменный ток избрали по причине наличия мощного средства для передачи. Речь о трансформаторе. Впервые сконструированный в 1831 году (либо раньше) Майклом Фарадеем, этот незаменимый элемент современной техники остался без заслуженного внимания. Интерес к устройству вернул Генрих Румкорф пятнадцатью годами позднее, использовав динамо для получения разряда в искровом промежутке. Повышающий трансформатор значительно усиливал эффект. Это прямиком открыло учёным путь к постановке опытов, но суть преобразования не получила заслуженного внимания.

Вместо этого учёные упорно бились над постоянным током. Создавая для него двигатели, приборы освещения и генераторы. Удивительно, зная об обратимости электрических машин, не придумали раньше, как создать униполярный мотор, стоящий сегодня в ручных миксерах и блендерах. Фактически двигатели бытового назначения однофазные. И лишь маленькая часть работает на постоянном токе.

Укажем неявное преимущество. У постоянного тока выше предел безопасности. Возможным видится сделать промышленные сети безвредным для людей. Рассмотрим утверждение подробнее, доводы не очевидны неискушённому читателю.

Почему постоянный ток безопаснее

Прожжённые электрики говорят, что удар током 220 В не слишком опасен, главное – не попасть под линейное трёхфазное напряжение. Оно выше примерно в корень из трёх раз (в пределах 1,7). Линейным называется напряжение между двумя фазами. За счёт сдвига между ними в 120 градусов получается указанный любопытный эффект. Невежды спрашивают, какая разница при сдвиге 90 градусов. Ответ дан вначале – три фазы образуют симметричную систему. Со сдвигом 90 понадобилось бы четыре.

В результате каждым линейным напряжением питают по полюсу, что существенно упрощает их размножение, когда требуется достичь большой мощности. К примеру, в тяговых двигателях пароходов, где требуется чрезвычайно плавно изменять усилие и приходится применять вращения вала. Случается, трёх и даже шести полюсов оказывается мало. Лишь коллекторному двигателю пылесоса достаточно двух.

Итак, между фазами имеется 308 В. Безопасным выглядит, если повысить частоту линии передач до 700 Гц. Тесла установил, что с указанного значения ярко проявляется скин-эффект, ток не проникает глубоко в тело. Следовательно, не наносит существенных повреждений человеку. Учёный демонстрировал языки молний на теле при гораздо больших напряжениях и говорил, что это полезно для здоровья, здорово очищает кожу.

Частота 700 Гц (или выше) не пущена в обиход — при этом существенно увеличивались потери трансформаторов. На момент принятия решения о номиналах первой ГЭС переменного тока не существовало наработок по изготовлению электротехнических материалов. Подробнее предлагаем прочитать в теме . Нет надобности дублировать информацию. По причине отсутствия нужных материалов потери на перемагничивание сильно росли с увеличением частоты. Сегодня подобное не вызывает затруднений на уровне технологии.

Встаёт сложность – экранирование. В годы первых попыток передачи энергии не знали об излучении. Радио делало первые шаги в 90-х годах XIX века. В действительности рост частоты сопровождается резким повышением выброса энергии в пространство. И провода требовалось экранировать, это дорого, требует наличия мощных диэлектриков. Не факт, что современные сети сумели бы решить задачу.

Тесла предлагал передавать энергию через эфир. Для чего построил башню Ворденклиф. Но… промышленники оказались заинтересованы в продаже меди на изготовление проводов и на этом основании отказали учёному в финансировании. Но главное — грядёт время, когда трёхфазное напряжение уйдёт в небытие или будет получаться из преобразователей, и сам Тесла даст ответ, как это сделать.

Точнее, ответ дадут многочисленные патенты и идеи изобретателя. Недаром записи были немедленно изъяты после смерти учёного и тщательно засекречены. Рекомендуем взяться за изучение . Пора мечтать, что машины станут ездить на растительном масле, не загрязняя окружающую среду отвратительным дымом и гарью. Обратите внимание, что все секреты лежат на поверхности и ждут желающего их раскрыть. Возможно, кто-то из читателей сумеет сделать это первым?

В настоящее время во всем мире получила наибольшее распространение трехфазная система переменного тока .

Трехфазной системой электрических цепей называют систему, состоящую из трех цепей, в которых действуют переменные, ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода(φ =2π /3). Каждую отдельную цепь такой системы коротко называют ее фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют просто трехфазным током .

Почти все генераторы, установленные на наших электростанциях, являются генераторами трехфазного тока . По существу, каждый такой генератор представляет собой соединение в одной электрической машине трех генераторов переменного тока, сконструированных таким образом, что индуцированные в них сдвинуты друг относительно друга на одну треть периода, как это показано на рис. 1.

Рис. 1. Графики зависимости от времени ЭДС, индуцированных в обмотках якоря генератора трехфазного тока

Как осуществляется подобный генератор легко понять из схемы на рис. 2.

Рис. 2. Три пары независимых проводов, присоединенных к трем якорям генератора трехфазного тока, питают осветительную сеть

Здесь имеются три самостоятельных якоря, расположенных на статоре электрической машины и смещенных на 1/3 окружности (120 о). В центре электрической машины вращается общий для всех якорей индуктор, изображенный на схеме в виде .

В каждой катушке одной и той же частоты, но моменты прохождения этих ЭДС через нуль (или через максимум) в каждой из катушек окажутся сдвинутыми на 1/3 периода друг относительно друга, ибо индуктор проходит мимо каждой катушки на 1/3 периода позже, чем мимо предыдущей.

Каждая обмотка трехфазного генератора является самостоятельным генератором тока и источником электрической энергии. Присоединив провода к концам каждой из них, как это показано на рис. 2, мы получили бы три независимые цепи, каждая из которых могла бы питать те или иные электроприемники, например .

В этом случае для передачи всей энергии, которую поглощают , требовалось бы шесть проводов. Можно однако, так соединить между собой обмотки генератора трехфазного тока, чтобы обойтись четырьмя и даже тремя проводами, т. е. значительно сэкономить проводку.

Первый из этих способов, называется соединением звездой (рис. 3).

Рис. 3. Четырехпроводная система проводки при соединении трехфазного генератора звездой. Нагрузки (группы электрических ламп I, II, III) питаются фазными напряжениями.

Будем называть зажимы обмоток 1, 2, 3 началами, а зажимы 1" , 2" , 3" - концами соответствующих фаз.

Соединение звезд заключается в том, что мы соединяем концы всех обмоток в одну точку генератора, которая называется нулевой точкой или нейтралью , и соединяем генератор с приемниками электроэнергии четырьмя проводами: тремя так называемыми линейными проводами , идущими от начала обмоток 1, 2, 3, и нулевым или нейтральным проводом , идущим от нулевой точки генератора. Такая система проводки называется четырехпроводной .

Напряжения между нулевой точкой и началом каждой фазы называют фазными напряжениями , а напряжения между началами обмоток, т, е. точками 1 и 2, 2 и 3, 3 и 1, называют линейными . Фазные напряжения обычно обозначают U1 , U2 , U3 , или в общем виде U ф, а линейные напряжения - U12, U23 , U31 , или в общем виде U л.

Между амплитудами или действующими значениями при соединении обмоток генератора звездой существует соотношение U л = √3 U ф ≈ 1,73U ф

Таким образом, например, если фазное напряжение генератора U ф = 220 В, то при соединении обмоток генератора звездой линейное напряжение U л - 380 В.

В случае равномерной нагрузки всех трех фаз генератора, т. е. при приблизительно одинаковых токах в каждой из них, ток в нулевом проводе равен нулю . Поэтому в этом случае можно нулевой провод упразднить и перейти к еще более экономной трехпроводной системе. Все нагрузки включаются при этом между соответствующими парами линейных проводов.

При несимметричной нагрузке ток в нулевом проводе не равен нулю, но, вообще говоря, он слабее, чем ток в линейных проводах. Поэтому нулевой провод может быть тоньше, чем линейные.

При эксплуатации трехфазного переменного тока стремятся сделать нагрузку различных фаз по возможности одинаковой. Поэтому, например, при устройстве осветительной сети большого дома при четырехпроводной системе вводят в каждую квартиру нулевой провод и один из линейных с таким расчетом, чтобы в среднем на каждую фазу приходилась примерно одинаковая нагрузка.

Другой способ соединения обмоток генератора, также допускающий трехпроводную проводку - это соединение треугольником, изображенное на рис. 4.

Рис. 4. Схема соединения обмоток трехфазного генератора треугольником

Здесь конец каждой обмотки соединен с началом следующей, так что они образуют замкнутый треугольник, а линейные провода присоединены к вершинам этого треугольника - точкам 1, 2 и 3. При соединении треугольником линейное напряжение генератора равно его фазному напряжению : U л = U ф.

Таким образом, переключение обмоток генератора со звезды на треугольник приводит к снижению линейного напряжения в √3 ≈ 1,73 раза . Соединение треугольником также допустимо лишь при одинаковой или почти одинаковой нагрузке фаз. Иначе ток в замкнутом контуре обмоток будет слишком силен, что опасно для генератора.

При применении трехфазного тока отдельные приемники (нагрузки), питающиеся от отдельных пар проводов, также могут быть соединены либо звездой, т. е. так, что один конец их присоединен к общей точке, а оставшиеся три свободных конца присоединяются к линейным проводам сети, либо треугольником, т. е. так, что все нагрузки соединяются последовательно и образуют общий контур, к точкам 1, 2, 3 которого присоединяются линейные провода сети.

На рис. 5 показано соединение нагрузок звездой при трехпроводной системе проводки, а на рис. 6 - при четырехпроводной системе проводки (в этом случае общая точка всех нагрузок соединяется с нулевым проводом).

Рис. 7. Соединение нагрузок треугольником при трехпроводной системе проводки

Практически важно иметь в виду следующее. При соединении нагрузок треугольником каждая нагрузка находится под линейным напряжением, а при соединении звездой - под напряжением, в √3 раз меньшим. Для случая четырехпроводной системы это ясно из рис. 6. Но то же имеет место в случае трехпроводной системы (рис. 5).

Между каждой парой линейных напряжений здесь включены последовательно две нагрузки, токи в которых сдвинуты по фазе на 2 π /3. Напряжение на каждой нагрузке равно соответствующему линейному напряжению, деленному на 3 .

Таким образом, при переключении нагрузок со звезды на треугольник напряжения на каждой нагрузке, а следовательно, и ток в ней повышаются в √3 ≈ 1,73 раза. Если, например, линейное напряжение трехпроводной сети равнялось 380 В, то при соединении звездой (рис. 5) напряжение на каждой из нагрузок будет равно 220 В, а при включении треугольником (рис. 7) будет равно 380 В.

При подготовке статьи использовалась информация из учебника физики под редакцией Г. С. Ландсберга.



Статьи по теме