Связь по оптике. Оптические линии связи

ВОЛС — это система, основывающаяся на передаче данных посредством оптического волокна.

Волоконно-оптическая линия связи способствует надежной передаче данных, обладает высокими показателями качества связи. Система способна работать вне зависимости от наличия электромагнитных помех, а также на больших расстояниях функционирует без усилителей.

В основе этого метода передачи информации лежит использование технологии волоконной оптики, когда свет является носителем данных.

Составляющие элементы ВОЛС

Принято разделять оборудование ВОЛС на активные и пассивные элементы.

Упрощенная схема действия всех компонентов заключается в нахождении на одном конце кабеля светодиода или лазерного диода, который передает сигнал.

Во время передачи данных инфракрасный диод создает импульс согласно с типом сигнала. Фотокодектор на другом конце волокна принимает и преобразует световой сигнал в электрический.

К активным компонентам системы относят:

  • мультиплексор — устройство, соединяющее несколько сигналов в единственный;
  • усилитель — позволяет увеличить мощность передаваемого сигнала;
  • светодиоды и лазерные диоды — источник света в кабеле;
  • фотодиод — приниматель сигнала на конечной части волокна, осуществляет преобразование полученного сигнала;
  • модулятор — устройство преобразования сигнала из электрического в оптический.

Пассивные элементы ВОЛС:

  • оптоволоконный кабель — среда, через которую передается сигнал;
  • оптическая муфта — соединяет несколько волокон;
  • оптический кросс — устройство на конце кабеля, подключающее его к активным элементам;
  • спайки — производят сращивание волокон;
  • разъемы — приспособления для отключения или подсоединения кабеля;
  • ответвители — устройства по распределению мощности оптики из нескольких волокон в единственный;
  • коммутаторы — оборудование для перераспределения оптических сигналов.

Строительство ВОЛС

Перед началом работ, связанных со строительством ВОЛС, необходимо провести ряд предварительных работ, то есть создать проект ВОЛС.

Задачами его является определение пропускных возможностей будущих линий связи; исследование среды, через которую будет пролегать система; расчет массы, объемов и общей стоимости всей ВОЛС; создание защитной системы для линии связи; обеспечение безопасности передаваемых данных.

Проектирование и строительство ВОЛС предусматривает установку оборудования, подготовку среды для проведения кабеля, производится закупка оборудования. Организовывается получение технических условий для монтажа линий связи.

После проведения вышеперечисленных этапов по проектированию и подготовки к работам, осуществляется монтаж оборудования: прокладка кабеля в грунте, канализации, коллекторах; установка модулей, крепление муфт, установка всех активных компонентов. После установки необходимого оборудования производятся мероприятия по созданию безопасных условий для кабеля.

Готовый участок линии связи тестируют по основным свойствам.

Виды измерений

Тестирование волоконно-оптической линии связи совершается путем проведения двух видов измерений. Первый вид оценивает затухание сигнала от одного конца кабеля до другого. С одной стороны подключается лазер, с другой фотодиод. Изменение тока данных между двумя компонентами свидетельствует о потерях в волокне. Прибор, с помощью которого происходит выявление затухания сигнала, называется оптический тестер.

Минус этого оборудования заключается в невозможности определения места повреждения, из-за которого происходят потери.

Второй вид измерений ВОЛС — это с помощью оптического рефлектометра. Прибор определяет месторасположение в кабеле дефектов, делает замеры потери сигнала в любой части волокна. Данные выводятся на экран в виде графиков, с помощью которых видны уровни сигнала и расстояния между разными точками всей системы.

Оптический бюджет

Оптический бюджет характеризует максимальное затухание в линии, которое возможно в линии связи. Функционирование возможно при не превышении величины бюджета. Все элементы системы разделяют на создающие в кабеле сигнал и на снижающие его, способствующие затуханию потока данных.

Элементами создающими сигнал являются трансиверы и усилители. Все остальные элементы и оборудование создают помехи и влияют на потерю сигнала.

Компании-производители систем указывают в документации расчет ВОЛС.

Произведение вычислений основывается на учете источников затухания в волокне, мультиплексоры, модули, участки соединения, наличие разветвлений. Для расчета оптического бюджета ВОЛС необходимо наличие данных о длине замеряемого участка волокна в км, количество соединение на оптических панелях, число сварочных скреплений.

Чтобы обеспечить надежность работы всей системы требуется брать во внимание возможность увеличения потерь сигнала за счет внешних факторов, независящих от самой линии, а также за счет старения оборудования.

Состоит оптоволокно из центрального проводника света (сердцевины) - стеклянного волокна, окруженного другим слоем стекла – оболочкой, обладающей меньшим показателем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выходят за ее пределы, отражаясь от покрывающего слоя оболочки. В оптоволокне световой луч обычно формируется полупроводниковым или диодным лазером. В зависимости от распределения показателя преломления и от величины диаметра сердечника оптоволокно подразделяется на одномодовое и многомодовое.

Рынок оптоволоконной продукции в России

История

Волоконная оптика хоть и является повсеместно используемым и популярным средством обеспечения связи, сама технология проста и разработана достаточно давно. Эксперимент с переменой направления светового пучка путем преломления был продемонстрирован Даниелем Колладоном (Daniel Colladon) и Жаком Бабинеттом (Jacques Babinet) еще в 1840 году. Спустя несколько лет Джон Тиндалл (John Tyndall) использовал этот эксперимент на своих публичных лекциях в Лондоне, и уже в 1870 году выпустил труд, посвященный природе света. Практическое применение технологии нашлось лишь в ХХ веке. В 20-х годах прошлого столетия экспериментаторами Кларенсом Хаснеллом (Clarence Hasnell) и Джоном Бердом (John Berd) была продемонстрирована возможность передачи изображения через оптические трубки. Этот принцип использовался Генрихом Ламмом (Heinrich Lamm) для медицинского обследования пациентов. Только в 1952 году индийский физик Нариндер Сингх Капани (Narinder Singh Kapany) провел серию собственных экспериментов, которые и привели к изобретению оптоволокна. Фактически им был создан тот самый жгут из стеклянных нитей, причем оболочка и сердцевина были сделаны из волокон с разными показателями преломления. Оболочка фактически служила зеркалом, а сердцевина была более прозрачной – так удалось решить проблему быстрого рассеивания. Если ранее луч не доходил да конца оптической нити, и невозможно было использовать такое средство передачи на длительных расстояниях, то теперь проблема была решена. Нариндер Капани к 1956 году усовершенствовал технологию. Связка гибких стеклянных прутов передавала изображение практически без потерь и искажений.

Изобретение в 1970 году специалистами компании Corning оптоволокна, позволившего без ретрансляторов продублировать на то же расстояние систему передачи данных телефонного сигнала по медному проводу, принято считать переломным моментом в истории развития оптоволоконных технологий. Разработчикам удалось создать проводник, который способен сохранять не менее одного процента мощности оптического сигнала на расстоянии одного километра. По нынешним меркам это достаточно скромное достижение, а тогда, без малого 40 лет назад, - необходимое условие для того, чтобы развивать новый вид проводной связи.

Первоначально оптоволокно было многофазным, то есть могло передавать сразу сотни световых фаз. Причём повышенный диаметр сердцевины волокна позволял использовать недорогие оптические передатчики и коннекторы. Значительно позже стали применять волокно большей производительности, по которому можно было транслировать в оптической среде лишь одну фазу. С внедрением однофазного волокна целостность сигнала могла сохраняться на большем расстоянии, что способствовало передаче немалых объёмов информации.

Самым востребованным сегодня является однофазное волокно с нулевым смещением длины волны. Начиная с 1983 года оно занимает ведущее положение среди продуктов оптоволоконной индустрии, доказав свою работоспособность на десятках миллионов километров.

Преимущества оптоволоконного типа связи

  • Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей. Это означает, что по оптоволоконной линии можно передавать информацию со скоростью порядка 1 Тбит/с;
  • Очень малое затухание светового сигнала в волокне, что позволяет строить волоконно-оптические линии связи длиной до 100 км и более без регенерации сигналов;
  • Устойчивость к электромагнитным помехам со стороны окружающих медных кабельных систем, электрического оборудования (линии электропередачи, электродвигательные установки и т.д.) и погодных условий;
  • Защита от несанкционированного доступа. Информацию, передающуюся по волоконно-оптическим линиям связи, практически нельзя перехватить неразрушающим кабель способом;
  • Электробезопасность. Являясь, по сути, диэлектриком, оптическое волокно повышает взрыво- и пожаробезопасность сети, что особенно актуально на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска;
  • Долговечность ВОЛС - срок службы волоконно-оптических линий связи составляет не менее 25 лет.

Недостатки оптоволоконного типа связи

  • Относительно высокая стоимость активных элементов линии, преобразующих электрические сигналы в свет и свет в электрические сигналы;
  • Относительно высокая стоимость сварки оптического волокна. Для этого требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при обрыве оптического кабеля затраты на восстановление ВОЛС выше, чем при работе с медными кабелями.

Элементы волоконно-оптической линии

  • Оптический приёмник

Оптические приёмники обнаруживают сигналы, передаваемые по волоконно-оптическому кабелю и преобразовывают его в электрические сигналы, которые затем усиливают и далее восстанавливают их форму, а также синхросигналы. В зависимости от скорости передачи и системной специфики устройства, поток данных может быть преобразован из последовательного вида в параллельный.

  • Оптический передатчик

Оптический передатчик в волоконно-оптической системе преобразовывает электрическую последовательность данных, поставляемых компонентами системы, в оптический поток данных. Передатчик состоит из параллельно-последовательного преобразователя с синтезатором синхроимпульсов (который зависит от системной установки и скорости передачи информации в битах), драйвера и источника оптического сигнала. Для оптических систем передачи могут быть использованы различные оптические источники. Например, светоизлучающие диоды часто используются в дешёвых локальных сетях для связи на малое расстояние. Однако, широкая спектральная полоса пропускания и невозможность работы в длинах волны второй и третьей оптических окон, не позволяет использовать светодиод в системах телесвязи.

  • Предусилитель

Усилитель преобразовывает асимметричный ток от фотодиодного датчика в асимметричное напряжение, которое усиливается и преобразуется в дифференциальный сигнал.

  • Микросхема cинхронизации и восстановления данных

Эта микросхема должна восстанавливать синхросигналы от полученного потока данных и их тактирование. Схема фазовой автоподстройки частоты, необходимая для восстановления синхроимпульсов, также полностью интегрирована в микросхему синхронизации и не требует внешних контрольных синхроимпульсов.

  • Блок преобразования последовательного кода в параллельный
  • Параллельно-последовательный преобразователь
  • Лазерный формирователь

Основной его задачей является подача тока смещения и модулирующего тока для прямого модулирования лазерного диода.

  • Оптический кабель , состоящий из оптических волокон, находящихся под общей защитной оболочкой.

Одномодовое волокно

При достаточно малом диаметре волокна и соответствующей длине волны через световод будет распространяться единственный луч. Вообще сам факт подбора диаметра сердечника под одномодовый режим распространения сигнала говорит о частности каждого отдельного варианта конструкции световода. То есть под одномодовостью следует понимать характеристики волокна относительно конкретной частоты используемой волны. Распространение лишь одного луча позволяет избавиться от межмодовой дисперсии, в связи с чем одномодовые световоды на порядки производительнее. На данный момент применяется сердечник с внешним диаметром около 8 мкм. Как и в случае с многомодовыми световодами, используется и ступенчатая, и градиентная плотность распределения материала.

Второй вариант более производительный. Одномодовая технология более тонкая, дорогая и применяется в настоящее время в телекоммуникациях. Оптическое волокно используется в волоконно-оптических линиях связи, которые превосходят электронные средства связи тем, что позволяют без потерь с высокой скоростью транслировать цифровые данные на огромные расстояния. Оптоволоконные линии могут как образовывать новую сеть, так и служить для объединения уже существующих сетей - участков магистралей оптических волокон, объединенных физически на уровне световода, либо логически - на уровне протоколов передачи данных. Скорость передачи данных по ВОЛС может измеряться сотнями гигабит в секунду. Уже сейчас дорабатывается стандарт, позволяющий передавать данные со скоростью 100 Гбит/c, а стандарт 10 Гбит Ethernet используется в современных телекоммуникационных структурах уже несколько лет.

Многомодовое волокно

В многомодовом ОВ может распространяться одновременно большое число мод – лучей, введенных в световод под разными углами. Многомодовое ОВ обладает относительно большим диаметром сердцевины (стандартные значения 50 и 62,5 мкм) и, соответственно, большой числовой апертурой. Больший диаметр сердцевины многомодового волокна упрощает ввод оптического излучения в волокно, а более мягкие требования к допустимым отклонениям для многомодового волокна позволяют уменьшить стоимость оптических приемо-передатчиков. Таким образом, многомодовое волокно преобладает в локальных и домашних сетях небольшой протяженности.

Основным недостатком многомодового ОВ является наличие межмодовой дисперсии, возникающей из-за того, что разные моды проделывают в волокне разный оптический путь. Для уменьшения влияния этого явления было разработано многомодовое волокно с градиентным показателем преломления, благодаря чему моды в волокне распространяются по параболическим траекториям, и разность их оптических путей, а, следовательно, и межмодовая дисперсия существенно меньше. Однако насколько не были бы сбалансированы градиентные многомодовые волокна, их пропускная способность не сравнится с одномодовыми технологиями.

Волоконно-оптические приёмопередатчики

Чтобы передать данные через оптические каналы, сигналы должны быть преобразованы из электрического вида в оптический, переданы по линии связи и затем в приёмнике преобразованы обратно в электрический вид. Эти преобразования происходят в устройстве приёмопередатчика, который содержит электронные блоки наряду с оптическими компонентами.

Широко используемый в технике передач мультиплексор с разделением времени позволяет увеличить скорость передачи до 10 Гб/сек. Современные быстродействующие волоконно-оптические системы предлагают следующие стандарты скорости передач.

Стандарт SONET Стандарт SDH Скорость передачи
OC 1 - 51,84 Мб/сек
OC 3 STM 1 155,52 Мб/сек
OC 12 STM 4 622,08 Мб/сек
OC 48 STM 16 2,4883 Гб/сек
OC 192 STM 64 9,9533 Гб/сек

Новые методы мультиплексного разделения длины волны или спектральное уплотнение дают возможность увеличить плотность передачи данных. Для этого многочисленные мультиплексные потоки информации посылаются по одному оптоволоконному каналу с использованием передачи каждого потока на разных длинах волны. Электронные компоненты в WDM-приемнике и передатчике отличаются по сравнению с теми, которые используются в системе с временным разделением.

Применение линий оптоволоконной связи

Оптоволокно активно применяется для построения городских, региональных и федеральных сетей связи, а также для устройства соединительных линий между городскими АТС. Это связано с быстротой, надёжностью и высокой пропускной способностью волоконных сетей. Также посредством применения оптоволоконных каналов существуют кабельное телевидение, удалённое видеонаблюдение, видеоконференции и видеотрансляции, телеметрические и другие информационные системы. В перспективе в оптоволоконных сетях предполагается использовать преобразование речевых сигналов в оптические.

В настоящее время в качестве оптических линий связи используют:

а) волоконно-оптические линии связи (ВОЛС);

б) оптические линии связи с использованием лазерной “пушки”;

в) оптические линии связи с использованием инфракрасных излучателей и приемников;

г) оптические линии связи с использованием кремнийорганического оптического волокна.

Структурная схема волоконно-оптической линии связи приведена на рис.4.2.

Рис.4.2. Структурная схема ВОЛС.

Электрический сигнал поступает на передатчик – трансивер, который преобразует электрический сигнал в световой импульс, который через оптический соединитель подается в оптический кабель. В месте приема оптический кабель с помощью оптического соединителя подключатся к приемнику – трансиверу, преобразующему пучок света в электрический сигнал.

В зависимости от назначения ВОЛС, ее протяженности, качества используемых комплектующих структурная схема может изменяться. При значительных расстояниях между пунктами передачи и приема вводится ретранслятор – усилитель сигналов. При малой длине оптического кабеля (если хватает строительной длины оптического кабеля) сварка кабеля не нужна. Под строительной длиной понимают длину цельного куска кабеля, поставляемого заводом – изготовителем.

Волоконно-оптические линии связи имеют следующие достоинства:

1. Высокая помехозащищенность от внешних электромагнитных помех и от межканальных взаимонаводок.

2. Широкий диапазон рабочих частот позволяет по такой линии связи можно передавать информацию со скоростью 10 12 бит/с = Тбит/c.

3. Защищенность от несанкционированного доступа: излучения в окружающее пространство ВОЛС почти не дает, а изготовление отводов оптической энергии без разрушения кабеля практически не возможно. А всякие воздействия на волокно могут быть зарегистрированы с помощью мониторинга (непрерывного контроля) целостности линии.

4. Возможность скрытой передачи информации.

5. Потенциально низкая стоимость, обусловленная заменой дорогостоящих цветных металлов (медь) материалами с неограниченными сырьевыми ресурсами (двуокись кремния).

6. Автоматически обеспечивается гальваническая развязка сегментов линии.

Однако в оптоволоконной технологии имеются и свои недостатки:

1. Высокая стоимость аппаратуры.

2. Требуется дорогое технологическое оборудование, как в процессе монтажа, так и в процессе эксплуатации. При обрыве оптического кабеля затраты на его восстановление значительно выше, чем на восстановление медного кабеля.

3. Относительно малая долговечность. Время жизни + сохранение им своих свойств в определенных допустимых пределах – оптического кабеля 25 лет. Заметим, что до настоящего времени в Москве эксплуатируются телефонные линии проложенные в начале века (см. Hard & Soft,1998,N11).


4. Оптические кабели не стойки к воздействию радиации.

Основу ВОЛС составляют оптические кабели, изготавливаемые из отдельных световодов – оптических волокон.

Передача оптической энергии по оптическому волокну обеспечивается с помощью эффекта полного внутреннего отражения. Оптическое волокно представляет собой двухслойный цилиндрический световод (рис.4.3.)

Рис.4.3. Распространение излучения и изменение и изменение показателя преломления в оптоволокне

Материал внутренней жилы имеет показатель преломления n 1 , а материал внешнего слоя n 2 , при этом n 1 >n 2 , т.е. материал внутренней жилы оптически более плотный, чем материал оболочки. Для излучения, входящего в цилиндр под малыми углами по отношению к оси цилиндра, выполняется условие полного внутреннего отражения: при падении излучения на границу с оболочкой вся энергия излучения отражается внутрь жилы световода. То же самое происходит и при всех последующих отражениях; в результате излучение распространяется вдоль оси световода, не выходя через оболочку. Максимальный угол отклонения от оси, при котором еще имеется полное внутреннее отражение, определяется выражением A 0 =sin y 0 =.

Величина A 0 называется числовой апертурой световода и учитывается при согласовании световода с излучателем. Излучение, падающее на торец под углами y>y­ 0 (внеапертурные лучи), при взаимодействии с оболочкой не только отражаются, но и преломляются; часть оптической энергии уходит из световода. В конечном итоге после многкратных встреч с границей жила-оболочка такое излучение полностью рассеивается из световода.

Излучение распространяется вдоль световода и в том случае, если уменьшение показателя преломления от центра к краю происходит не ступенчато, а постепенно. В таких световодах лучи, входящие в торец, преломляясь, фокусируются вблизи осевой линии (см.рис.4.4).

Рис.4.4. Распространение излучения и изменение показателя преломления в селфоке.

Любой отрезок такого световода действует как короткофокусная линза, вызывая эффект самофокусировки.

Эти световоды называют селфоками (self – сам, focus – фокус).

Промышленность многих стран освоила выпуск широкой номенклатуры изделий и компонентов ВОЛС. Следует заметить, что производство оптического волокна сосредоточено в основном в США. Для передачи сигналов применяются два вида оптоволокна: одномодовое и многомодовое. В одномодовом волокне световодная жила имеет диаметр 8-10 мкм. В многомодовом волокне диаметр световодной жилы составляет 50-60 мкм.

Оптоволокно характеризуется двумя важнейшими параметрами: затуханием и дисперсией.

Количественно затухание определяется по формуле

Pвх – мощность входного оптического сигнала;

Pвых – мощность выходного оптического сигнала;

l – длина световода.

Единицей измерения затухания служит децибелл на километр (дБ/км).

Затухание определяется потерями на поглощение и рассеяние излучения в оптоволокне. Потери на поглощение зависят от частоты материала, а потери на рассеяние – от неоднородности его показателей преломления. Зависит затухание и от длины волны излучения, вводимого в оптоволокно. В настоящее время передача сигналов по волокну осуществляется в трех диапазонах: 0.85 мкм, 1.3 мкм, 1.55 мкм, так как именно в этих диапазонах кварц имеет повышенную прозрачность. Оптоволокно характеризуется очень малым затуханием. Лучшие образцы российского волокна имеют затухание 0.22 дБ/км при длине волны 1.55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. Оптоволокно фирмы Sumitoto (Япония) имеет затухание 0.154 дБ/км при длине волны 1.55мкм. Имеются сообщения о разработке так называемых фторцирконатных оптоволокон с затуханием порядка 0.02 дБ/км, что позволит обеспечить скорость передачи порядка 1 Гбит/с с регенераторами через 4600 км.

Дисперсия, т.е. зависимость скорости распространения сигнала от длины волны излучения, - другой важнейший параметр оптического волокна. Поскольку при передаче информации светодиод или лазер излучает некоторый спектр длин волн, дисперсия приводит к уширению импульсов при распространении по волокну и тем самым порождает искажения сигналов. При оценке дисперсии пользуются термином “полоса пропускания” - величина, обратная величине уширения импульса при прохождении им по оптическому волокну расстояния в 1 км.

Измеряется полоса пропускания в мегагерцах на километр (МГц * км). Дисперсия накладывает ограничения на дальность передачи и верхнее значение частоты передаваемых сигналов.

Величина затухания и дисперсии различаются для разных типов оптических волокон.

Одномодовые волокна обладают лучшими характеристиками по затуханию и полосе пропускания. Однако одномодовые источники излучения (диодные лазеры, работающие на длине волны 1.55 мкм) в несколько раз дороже многомодовых (светоизлучающий диод, функционирующий на длине волны 0.85 мкм). Сращивание одномодовых волокон, монтаж оптических разъемов на концах одномодовых кабелей обходится дороже. Однако полоса пропускания многомодовых волокон достигает 1000 МГц * км, что приемлемо только для локальных сетей связи.

Для связи приемника и передатчика используется волоконно-оптический кабель (ВОК), в котором оптические волокна дополняются элементами повышающими эластичность и прочность кабеля.

Основными показателями ВОК являются условия эксплуатации и пропускная способность.

Связь корректирующей способности кода с кодовым расстоянием

Степень различия любых двух кодовых комбинаций характеризуется расстоянием между ними по Хэммингу или просто кодовым расстоянием .

Расстояние Хэмминга d выражается числом позиций, в которых кодовые комбинации отличаются одна от другой.

Пример 1. Найти расстояние Хэмминга d между кодовыми комбинациями 10101011 и 11111011.

Введение

1. Основная часть

1. Волоконно-оптические линии связи как понятие

Физические особенности

Технические особенности

Есть в волоконной технологии и свои недостатки

Оптическое волокно и его виды

Волоконно-оптический кабель

Электронные компоненты систем оптической связи

Лазерные модули для ВОЛС

Фотоприемные модули для ВОЛС

Применение ВОЛС в вычислительных сетях

Заключение

Список используемой литературы


Введение

С начала развития компьютерной техники прошло немного немало шестьдесят лет. За это время мы получили такие скорости вычислений, такие скорости передачи данных, о которых шестьдесят лет тому назад нельзя было и мечтать. Все началось с того, что в 1948 году вышли книги К. Шеннона “Математическая теория связи” и Н. Винера “Кибернетика, или управление и связь в животном и машине ”. Они и определили новый вектор развития науки, в результате чего появился компьютер: вначале ламповый гигант, затем транзисторный и на интегральных схемах, на микропроцессорах. И вот в 1989 году появился персональный компьютер IBM. В том же году вышла программа MS – DOS, а в 1990 – Windows-3.0, и далее пошло стремительное совершенствование “железа” и программного обеспечения. К концу столетия человечество получило потрясающую миниатюризацию компьютерной техники, сокращения расстояния между компьютером и человеком, тотальное проникновение компьютерных технологий в бытовую сферу. 1986 год – рождение Интернета, глобальной сети, охватившей практически все страны мира, поставляющей каждому пользователю текущую информацию. Получив настолько быструю обработку данных, люди пришли к выводу, что можно перестать терять время и деньги, также на передачу этих данных, а также увеличить скорость доступа, и скорость передачу данных. Это стало возможным благодаря использованию новых видов связи, таких как оптическое волокно, пришедших на замену банальным алюминиевым и медным проводам.

Тема об оптоволоконной линии связи, является актуальной на данный момент времени, так как число людей на планете растет, и потребности в улучшение жизни то же увеличиваются. Ещё с древних времён человек совершенствуется: улучшает свои знания, стремится улучшить жизнь, создавая и моделируя предметы быта. И сейчас многие фирмы создают телевизоры, телефоны, магнитофоны, компьютера и многое другое, то есть – бытовую технику, которая упрощают жизнь человека. Но для внедрения этих новых технологий нужно изменять или улучшать старое. В пример этому можно привести наши линии связи на коаксиальном (медном) кабеле, про которые уже было упомянуто выше. Их скорость мала, даже для передачи видеоинформации. А волоконная оптика как раз то, что нам нужно - её скоростью передачи информации очень велика. Плюс, низкие потери при передаче сигнала позволяет прокладывать значительные по дальности участки кабеля без установки дополнительного оборудования. Оптоволокно имеет хорошую помехозащищенность, легкость прокладки и долгие сроки работы кабеля практически в любых условиях. И, кроме того, оптоволокно не имеет смысла воровать с целью сдачи на металлолом. В настоящее время оптоволокно находит свое применение преимущественно в теле - и интернет – коммуникациях. Но считается, что сегодняшнее использование оптоволокна лишь вершина айсберга его применения.


1. Волоконно-оптические линии связи как понятие

Волоконно-оптические линии связи - это вид связи, при котором информация передается по оптическим диэлектрическим волноводам, известным под названием "оптическое волокно". Оптическое волокно в настоящее время считается самой совершенной физической средой для передачи информации, а также самой перспективной средой для передачи больших потоков информации на значительные расстояния. К примеру, В настоящее время волоконно-оптические кабели проложены по дну Тихого и Атлантического океанов и практически весь мир "опутан" сетью волоконных систем связи (Laser Mag.-1993.-№3; Laser Focus World.-1992.-28, №12; Telecom. mag.-1993.-№25; AEU: J. Asia Electron. Union.-1992.-№5). Европейские страны через Атлантику связаны волоконными линиями связи с Америкой. США, через Гавайские острова и остров Гуам - с Японией, Новой Зеландией и Австралией. Волоконно-оптическая линия связи соединяет Японию и Корею с Дальним Востоком России. На западе Россия связана с европейскими странами Петербург - Кингисепп - Дания и С.-Петербург – Выборг - Финляндия, на юге - с азиатскими странами Новороссийск - Турция. В Европе, также, как и в Америке, давно уже нашли широкое применение практически во всех сферах связи, энергетики, транспорта, науки, образования, медицины, экономики, обороны, государственно-политической и финансовой деятельности. Итак, основания считать оптоволокно самой перспективной средой для передачи больших потоков информации вытекает из ряда особенностей, присущих оптическим волноводам.

2. Физические особенности

Широкополосность оптических сигналов, обусловленная чрезвычайно высокой несущей частотой. Это означает, что по оптической линии связи можно передавать информацию со скоростью порядка 1 Терабит/с.

Говоря другими словами, по одному волокну можно передать одновременно10 миллионов телефонных разговоров и миллион видеосигналов. Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга. Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптического канала связи. На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут. А это означает, что до сих пор при столь сильной загруженности нашего интернета не нашлось столько информации, которая при одновременной передачи привела бы к уменьшению скорости передаваемого потока данных.

Очень малое (по сравнению с другими средами) затухание светового сигнала в волокне. Иными словами потеря сигнала за счет сопротивления материала проводника. Лучшие образцы российского волокна имеют столь малое затухание, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. В оптических лабораториях США разрабатываются еще более "прозрачные", так называемые фтороцирконатные волокна. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с.


3. Технические особенности

Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди, отсюда и сравнительно не большая цена и практически отсутствие случаев кражи с целью сдачи на металлолом

Оптические волокна имеют диаметр около 1 – 0,2 мм, то есть очень компактны и легки, что делает их перспективными для использования в авиации, приборостроении, в кабельной технике.

Стеклянные волокна - не металл, при строительстве систем связи автоматически достигается гальваническая развязка сегментов. Применяя особо прочный пластик, на кабельных заводах изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении. Такие кабели можно монтировать на мачтах существующих линий электропередач, как отдельно, так и встроенные в фазовый провод, экономя значительные средства на прокладку кабеля через реки и другие преграды.

Системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Волоконно-оптические линии связи нельзя подслушать неразрушающим способом. Всякие воздействия на волокно могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии. Теоретически существуют способы обойти защиту путем мониторинга, но затраты на реализацию этих способов будут столь велики, что превзойдут стоимость перехваченной информации. К примеру вы все же решили это сделать. Для обнаружения перехватываемого сигнала вам понадобится перестраиваемый интерферометр Майкельсона специальной конструкции. Причем, видимость интерференционной картины может быть ослаблена большим количеством сигналов, одновременно передаваемых по оптической системе связи. Можно распределить передаваемую информацию по множеству сигналов или передавать несколько шумовых сигналов, ухудшая этим условия перехвата информации. Потребуется значительный отбор мощности из волокна, чтобы несанкционированно принять оптический сигнал, а это вмешательство легко зарегистрировать системами мониторинга.

Важное свойство оптического волокна - долговечность. Время жизни волокна, то есть сохранение им своих свойств в определенных пределах, превышает 25 лет, что позволяет проложить оптико-волоконный кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие, без замены самого кабеля.

4. Есть в волоконной технологии и свои недостатки

При создании линии связи требуются активные высоконадежные элементы, преобразующие электрические сигналы в свет и свет в электрические сигналы. Необходимы также оптические коннекторы (соединители) с малыми оптическими потерями и большим ресурсом на подключение-отключение.

Точность изготовления таких элементов линии должна соответствовать длине волны излучения, то есть погрешности должны быть порядка доли микрона. Поэтому производство таких компонентов оптических линий связи очень дорогостоящее.

Другой недостаток заключается в том, что для монтажа оптических волокон требуется дорогостоящее технологическое оборудование. а) инструменты для оконцовки. б) коннекторы. в) тестеры. г) муфты и спайс- кассеты.

В настоящее время в качестве оптических линий связи используют:

  • а) оптические линии с использованием волоконно-оптического кабеля - волоконно-оптические линии связи (ВОЛС);
  • б) оптические линии связи без использования волоконно-оптического кабеля.

Наилучшие показатели по скорости передачи данных, по помехозащищенности, по защищенности от несанкционированного доступа имеют волоконно-оптические линии связи.

Волоконно-оптические линии связи (ВОЛС)

Структурная схема волоконно-оптической линии связи приведена на рис. 7.11.

Рис. 7.11.

Электрический сигнал поступает на передатчик - трансивер, который преобразует электрический сигнал в световой импульс. Последний через оптический соединитель подается в оптический кабель. В месте приема оптический кабель с помощью оптического соединителя подключатся к приемнику - трансиверу, преобразующему пучок света в электрический сигнал.

В зависимости от назначения ВОЛС, ее протяженности, качества используемых комплектующих структурная схема может изменяться. При значительных расстояниях между пунктами передачи и приема вводится ретранслятор - усилитель сигналов. При малой длине оптического кабеля (если хватает строительной длины оптического кабеля) сварка кабеля не нужна. Под строительной длиной понимают длину цельного куска кабеля, поставляемого заводом-изготовигелем.

Волоконно-оптические линии связи имеют следующие достоинства:

  • 1. Высокую помехозащищенность от внешних электромагнитных помех и от межканальных взаимонаводок.
  • 2. Широкий диапазон рабочих частот позволяет по такой линии связи передавать информацию со скоростью 10 |2 бит/с = Тбит/с.
  • 3. Защищенность от несанкционированного доступа: излучения в окружающее пространство ВОЛС почти не дает, а изготовление отводов оптической энергии без разрушения кабеля практически невозможно. А всякие воздействия на волокно могут быть зарегистрированы с помощью мониторинга (непрерывного контроля) целостности линии.
  • 4. Возможность скрытой передачи информации.
  • 5. Потенциально низкую стоимость, обусловленную заменой дорогостоящих цветных металлов (медь) материалами с неограниченными сырьевыми ресурсами (двуокись кремния).
  • 6. Автоматически обеспечивается гальваническая развязка сегментов линии.

Однако в оптоволоконной технологии имеются и свои недостатки:

  • 1. Высокая стоимость аппаратуры.
  • 2. Требуется дорогое технологическое оборудование, как в процессе монтажа, так и в процессе эксплуатации. При обрыве оптического кабеля затраты на его восстановление значительно выше, чем на восстановление медного кабеля.
  • 3. Оптические кабели нестойки к воздействию радиации.

Основу ВОЛС составляют оптические кабели, изготавливаемые из

отдельных световодов - оптических волокон.

Оптическое волокно представляет собой тонкую двухслойную нить, состоящую из сердечника и оболочки с различными показателями преломления. Для защиты волокна от атмосферных и механических воздействий поверх светоотражающей оболочки накладывается защитное покрытие. Конструкция оптического волокна с защитным покрытием представлена на рис.7.12.

Рис. 7.12.

Используются 3 типа оптических волокон: полимерные оптические волокна (POF = Plastic Optical Fiber), кварц-полимерные оптические волокна (PCF = Polymer Cladded Fiber), кварцевые оптические волокна (GOF = Glass Optical Fiber).

Полимерные оптические волокна изготавливаются из полимерных материалов, имеющих высокие оптические свойства. Волоконно- оптические кабели из полимерного оптического волокна характеризуются хорошей гибкостью (при диаметре волокна 1,5 мм допустимый радиус изгиба волокон равен 8 мм) и обеспечивают пропускную способность до 2,5 Гбит/с, что существенно выше, чем у витой пары (max 1 Гбит/с). Дальность передачи данных - до 80 м.

POF используется в настоящее время достаточно широко. Его используют для систем декоративного, архитектурного и ландшафтного освещения, для подсветки бассейнов, для безопасного освещения взрывоопасных помещений. Еще одной областью применения можно считать использование POF для изготовления систем визуальной индикации информационных панелей бытовой, автомобильной, промышленной и медицинской электроники. ПОВ применяют для создания высокоскоростных недорогих, свободных от электромагнитных помех линий передачи данных на небольшие расстояния (системы автоматизации технологических процессов, передача сигналов от видеокамер, оптических датчиков; локальные вычислительные сети). Например, ПОВ-кабели используются в промышленном стандарте PROFIBUS. На рис.7.13 приведен внешний вид такого кабеля с установленным соединителем.

Кварц-полимерные оптические волокна изготавливаются с кварцевым сердечником и полимерной светоотражающей оболочкой и предназначены для систем внутри- и межобъектовой связи. Дальность передачи данных до 400 м, радиус многократных изгибов кабеля - не менее

75 мм. PCF-кабсли поставляются заранее разделанными с установленными соединителями. Внешний вид одного из таких кабелей приведен на рис. 7.13.


Рис. 7.13.

Кварцевые оптические волокна изготавливаются из высокочистого кварцевого стекла (сердечник и светоотражающая оболочка) и применяются гам, где большие объемы данных необходимо передавать на высоких скоростях и на большие расстояния - до нескольких километров (систем дальней, внутри- и межобъектовой связи: локальных компьютерных сетях LAN (Local Area Networks), сетях MAN (Metropolitan Area Networks), сетях WAN (Wide Area Networks)).

Передача оптической энергии по оптическому волокну обеспечивается с помощью эффекта полного внутреннего отражения. Кварцевое оптическое волокно представляет собой двухслойный цилиндрический световод (рис. 7.14).


Рис. 7.

в оптоволокне

Материал внутренней жилы имеет показатель преломления п и а материал внешнего слоя - п 2 , при этом п > п 2 , т. е. материал внутренней жилы оптически более плотный, чем материал оболочки. Для излучения, входящего в цилиндр под малыми углами по отношению к оси цилиндра, выполняется условие полного внутреннего отражения: при падении излучения на границу с оболочкой вся энергия излучения отражается внутрь жилы световода. То же самое происходит и при всех последующих отражениях; в результате излучение распространяется вдоль оси световода, не выходя через оболочку. Максимальный угол отклонения от оси, при котором еще имеется полное внутреннее отражение, определяется выражением

Величина А 0 называется числовой апертурой световода и учитывается при согласовании световода с излучателем. Излучение, падающее на торец под углами у >уо (внеапертурные лучи), при взаимодействии с оболочкой не только отражается, но и преломляется; часть оптической энергии уходит из световода. В конечном итоге после многократных встреч с границей жила-оболочка такое излучение полностью рассеивается из световода.

Оптоволокно характеризуется двумя важнейшими параметрами: дисперсией и затуханием.

Дисперсия, т. е. зависимость скорости распространения сигнала от длины волны излучения, - важнейший параметр оптического волокна. Поскольку при передаче информации светодиод или лазер излучает некоторый спектр длин волн, дисперсия приводит к уширению импульсов при распространении по волокну и тем самым порождает искажения сигналов. При оценке дисперсии пользуются термином «полоса пропускания» - величина, обратная величине уширения импульса при прохождении им по оптическому волокну расстояния в 1 км. Измеряется полоса пропускания в мегагерцах на километр (МГц км). Дисперсия накладывает ограничения на дальность передачи и верхнее значение частоты передаваемых сигналов.

Затухание определяется потерями на поглощение и рассеяние излучения в оптоволокне. Потери на поглощение зависят от чистоты материала, а потери на рассеяние - от неоднородности его показателей преломления. Зависит затухание и от длины волны излучения, вводимого в оптоволокно.

Количественно затухание определяется по формуле

где Р вх - мощность входного оптического сигнала; Р еих - мощность выходного оптического сигнала; / - длина световода.

Единицей измерении затухания служит децибелл на километр (дБ/км).

Величины затухания и дисперсии различаются для разных типов кварцевых оптических волокон.

В зависимости от диаметра и профиля показателя преломления в направлении от центра к периферии в поперечном сечении световода они делятся на многомодовые со ступенчатым профилем показателя преломления, одномодовые волокна, многомодовые волокна с градиентным изменением показателя преломления. На рис. 7.15 приведены пути распространения света в различных типах оптоволокна.


Рис. 7.15.

Волокно на (рис.7.15, а) называется волокном со ступенчатым профилем показателя преломления и многомодовым, поскольку для распространения луча света существует много возможных путей, или мод. Это множество мод приводит к дисперсии (уширению) импульса, поскольку каждая мода проходит в волокне различный путь, а поэтому разные моды имеют разную задержку передачи, проходя от одного конца волокна до другого. Результат этого явления - ограничение максимальной частоты, которую можно эффективно передавать при данной длине волокна. Увеличение или частоты, или длины волокна сверх предельных значений, по существу, приводит к слиянию следующих друг за другом импульсов, из-за чего их становится невозможно различить. Для типового многомодового волокна этот предел равен примерно 15 МГц км. Это означает, что видеосигнал с полосой, например, 5 МГц может быть передан на максимальное расстояние в 3 км (5 МГц? 3 км = 15 МГц км). Попытка передать сигнал набольшее расстояние приведет к прогрессирующей потере высоких частот. В многомодовом волокне диаметр световой жилы составляет 50; 62,5; 85; 140 мкм.

Одномодовые волокна (рис.7.15, Ь) весьма эффективно снижают дисперсию, и результирующая полоса - во много ГГц км - делает их идеальными для протяженных линий связи. По одномодовым световодам в идеальном случае распространяется только одна волна. Они обладают значительно меньшим коэффициентом затухания (в зависимости от длины волны в 2...4 и даже в 7... 10 раз) по сравнению с многомодовыми и наибольшей пропускной способностью, т. к. в них почти не искажается сигнал. Но для этого диаметр сердцевины световода должен быть соизмерим с длиной волны. Практически диаметр равен 8... 10 мкм. К сожалению, волокно столь малого диаметра требует применения мощного, прецизионно совмещенного, а поэтому сравнительно дорогостоящего излучателя на лазерном диоде, что снижает их привлекательность для многих применений.

В идеале требуется волокно с полосой пропускания того же порядка, что и одномодового волокна, но с диаметром, как у многомодового, чтобы было возможно применение недорогих передатчиков на светодиодах. До некоторой степени этим требованиям удовлетворяет многомодовое волокно с градиентным изменением показателя преломления (рис. 7.15, с). Оно напоминает многомодовое волокно со ступенчатым изменением показателя преломления, о котором говорилось выше, но показатель преломления его сердцевины неоднороден - он плавно изменяется от максимального значения в центре до меньших значений на периферии. Это приводит к двум следствиям. Первое - свет распространяется по слегка изгибающемуся пути, и второе, и более важное, различия в задержке распространения разных мод минимальны. Это связано с тем, что высокие моды, входящие в волокно под большим углом и проходящие больший путь, на самом деле начинают распространяться с большей скоростью по мерс того, как они удаляются от центра в зону, где показатель преломления снижается, и в основном движутся быстрее, чем моды низших порядков, остающиеся вблизи оси волокна, в области высокого показателя преломления. Увеличение скорости как раз компенсирует больший проходимый путь.

Градиентные многомодовые световоды предпочтительнее, т. к. в них, во-первых, распространяется меньше мод и, во-вторых, меньше различаются их углы падения и отражения, а следовательно, благоприятнее условия передачи.

Хотя многомодовые волокна с градиентным показателем преломления не являются идеальными, но тем не менее они демонстрируют весьма неплохие значения полосы. Поэтому в большинстве систем малой и средней протяженности выбор такого типа волокон оказывается предпочтительным.

Оптический сигнал затухает во всех волокнах со скоростью, зависящей от длины волны передатчика источника света. Существует три длины волны, на которых затухание оптического волокна обычно минимально, - 850, 1310 и 1550 нм. Они известны как окна прозрачности. Для многомодовых систем окно на длине волны в 850 нм - первое и наиболее часто используемое (наименьшая цена оптоволоконной линии связи). На этой длине волны градиентное многомодовое волокно хорошего качества показывает затухание порядка 3 дБ/км, что делает возможной реализацию связи на расстояниях свыше 3 км.

На длине волны 1310 нм то же самое волокно показывает еще меньшее затухание - 0,7 дБ/км, позволяя тем самым пропорционально увеличить дальность связи примерно до 12 км; 1310 нм - это также первое рабочее окно для одномодовых оптоволоконных систем, затухание при этом составляет около 0,4 дБ/км, что в сочетании с передатчиками на лазерных диодах позволяет создавать линии связи длиной свыше 50 км. Второе окно прозрачности - 1550 нм - используется для создания еще более длинных линий связи (затухание волокна - менее 0,24 дБ/км).

Значения затухания в различных окнах прозрачности в многомодовых и одномодовых световодах приведены в табл. 7.3.

Таблица 7.3

Значения затухания в многомодовых и одномодовых световодах

Для связи приемника и передатчика используется волоконно- оптический кабель (ВОК), в котором оптические волокна дополняются элементами, повышающими эластичность и прочность кабеля, защиту кабеля от внешних факторов. Различают кабели для внутренней прокладки, кабель для использования вне помещений (кабели, которые могут закапываться в грунт; кабели, которые прокладываются в специальных канализациях; кабели, которые подвешиваются на открытом пространстве), кабели для подводных протяженных линий связи.

Почти вес европейские производители наносят на оптоволоконный кабель маркировку, соответствующую системе стандарта DIN VDE 0888. По этому стандарту каждому типу кабеля ставится в соответствие последовательность букв и цифр, в которых заключены все характеристики волоконно-оптических кабелей. Отечественные производители используют свою классификацию и свою систему обозначений.

Временный выход из строя оптического кабеля или отсутствие возможности прокладки кабеля, необходимость высокой защищенности от электромагнитных помех и перехвата привело к созданию беска- бельных оптических линий связи с различной дальностью связи.

Оптические линии связи без использования волоконно-оптического кабеля разделяют на оптические линии с большой дальностью связи и локальные беспроводные оптические линии.

Идеология бескабельной оптики основана на том, что оптический канал заменяет кабель.



Статьи по теме