Стабилизатор напряжения 220в для чего он нужен. Стабилизатор напряжения и стабилизатор тока

Стабилизаторы напряжения приобретают не от хорошей жизни, и раз вы это сделали, то у вас, скорее всего уже есть или были проблемы с напряжением.

Стандартный уровень напряжения согласно норм, должен быть 230 вольт (не 220, как многие до сих пор считают).

Но в зависимости от места проживания (протяженность и загруженность линий электропередач) и возможных аварий в электросетях (обрыв нулевого провода, перегрузка), напряжение может быть либо стабильно заниженным-повышенным, либо просто ”скакать” в произвольных величинах.

Когда приобретается маленький аппарат для защиты одного конкретного прибора – компьютер, холодильник, телевизор, котел, то с подключением проблем не возникает.

На стабилизаторе имеется вилка и розетка. Тут разберется даже школьник.

А вот если вы хотите установить мощный аппарат, для защиты электроприборов всего дома одновременно, тогда придется повозиться со схемой подключения.

Что нужно для подключения

Помимо самого стабилизатора, вам понадобится ряд дополнительных материалов:


Сечение провода должно быть точно таким же, как и на вашем вводном кабеле, который приходит на рубильник или автомат главного ввода. Так как через него будет идти вся нагрузка дома.

Данный выключатель в отличие от простых, имеет три состояния:

1 включен потребитель №1 2 выключено 3 включен потребитель №2

Можно использовать и обычный модульный автомат, но при такой схеме, если понадобится отключиться от стабилизатора, придется каждый раз полностью обесточивать весь дом и перекидывать провода.

Есть конечно же режим байпас или транзит, но чтобы перейти на него, нужно соблюдать строгую последовательность. Подробнее об этом будет сказано ниже.

С данным переключателем, вы одним движением целиком отсекаете агрегат, а дом остается со светом напрямую.


Вы должны четко понимать, что стабилизатор напряжения устанавливается строго до электросчетчика, а не после него.

Ни одна энергоснабжающая организация вам не разрешит подключиться по другому, как бы вы не доказывали, что тем самым, кроме эл.оборудования в доме, вы хотите защитить и сам прибор учета.

Стабилизатор имеет свой холостой ход и также потребляет эл.энергию, даже работая без нагрузки (до 30Вт/ч и выше). И эта энергия должна быть учтена и подсчитана.

Второй важный момент – крайне желательно, чтобы в схеме до места подключения прибора стабилизации было либо УЗО, либо дифф.автомат.

В ниже описываемом способе как раз и будет рассматриваться такой вариант. Ведь очень часто эти аппараты вешают на стене в комнатах, прихожих, в свободном доступе для прикосновения.

А пробой обмоток трансформатора на корпус, не такая уж и редкая вещь.

Инструкция по подключению в щитке

Первым делом монтируете в электрощитке, сразу после вводного автомата трехпозиционный переключатель.


Вдруг он у вас вышел из строя или нужно провести какие либо ревизионные работы. Не будете же каждый раз откидывать провода и обесточивать всю квартиру.



Выбираете место установки стабилизатора напряжения. Ставить где попало его тоже нельзя. Существуют определенные правила, которых следует придерживаться.

Прокладываете от щитка до этого места два кабеля ВВГнГ-Ls.

Каждый из них желательно промаркировать и сделать соответствующие надписи с обоих концов:

  • вход на стабилизатор


Снимаете изоляцию с жил и сначала подключаете кабель в электрощитке. Фазу с того провода, что идет на вход стабилизатора, подсоединяете к выходным зажимам вводного автомата.

Далее разбираетесь с кабелем стабилизатор-выход. Фазную жилу (пусть это будет белый провод), подключаете к контакту №2 на трехпозиционном выключателе.

Ноль и землю с обоих кабелей сажаете на соответствующие шинки.

Теперь нужно подать фазу непосредственно с вводного автомата на трехпозиционный. Зачищаете монтажный провод ПУГВ, оконцовываете жилы наконечниками НШВИ и заводите его с фазного выхода вводного автомата на зажим №4 выключателя.

Все что остается сделать в щитке – запитать все автоматы с клеммы №1 трехпозиционника.

Проделываете эту операцию опять же гибкими монтажными проводами.

Таким образом по схеме вы подали фазу с вводного автомата на 3-х позиционный, а уже далее через его контакты распределили нагрузку, путем подключения через стабилизатор (контакт №2-№1) и напрямую без него (контакт №4-№1).

В вашем конкретном случае данные номера контактов могут не совпадать с указанными здесь цифрами! Обязательно уточняйте все в инструкции или в паспорте на автомат.

Подключение стабилизатора

Теперь переходим к непосредственному подключению самого стабилизатора. Для того, чтобы подобраться к его контактам, может понадобиться снять внешнюю крышку.

Пропускаете два кабеля (вход и выход) через отверстия и зажимаете под клеммы по следующей схеме:

  • фазную жилу входного кабеля стабилизатора затягиваете на клемме ВХОД (Lin)
  • нулевую жилу (синего цвета) к клемме N (Nin)
  • заземляющую жилу к винтовому зажиму с обозначением ”земля”

Кстати, отдельной клеммы ”земля” может и не быть. Тогда данную жилу закручиваете под винт на самом корпусе аппарата.

Есть модели с клеммниками всего под 3 провода. В них назад возвращается только фаза.

Ноль на питание электроприборов берется с общего щитка.

Теперь когда вы подали напряжение от щитка до стабилизатора, вам нужно вернуть это напряжение, но уже стабилизированное обратно в общий щит.

Для этого подсоединяете кабель - выход со стабилизатора.

  • его фазную жилу к зажиму ВЫХОД (Lout)
  • нулевую к N (Nout)
  • жилу заземления, туда же где и заземляющая жила от входного кабеля

Еще раз визуально проверяете всю схему и закрываете крышку.

Проверка схемы

Первое включение нужно осуществлять без нагрузки. То есть все автоматы кроме вводного и того, что идет на стабилизатор должны быть отключены.

Запускаете его на холостой ход и контролируете работу. Входные и выходные параметры, нет ли посторонних шумов или писка.

Также не помешает проверить правильность и точность тех.данных, что высвечиваются на электронном табло.

Если у вас дома трехфазная сеть 380В, то для такого подключения рекомендуется использовать 3 однофазных стабилизатор напряжения, с подключением каждого по отдельной фазе.

Более подробно о преимуществах трехфазных и однофазных аппаратов и когда какой нужно выбирать, можно ознакомиться в статье ” ”.

Ошибки подключения

1 Неправильное расположение и место установки

У вас может быть все идеально подключено и соблюдена схема, но стабилизатор будет постоянно греться и отключаться, либо на его табло выскакивать ошибки.

2 Подключение через простой автомат, а не трехпозиционный

Безусловно, данный пункт и ошибкой то трудно назвать. Тем более 90% потребителей именно так и делают.

Однако, этот выключатель может реально спасти ваш прибор от выхода из строя.

Дело в том, что переключение стабилизатора напряжения из обычного режима в режим “транзит”, должно выполняться с определенной последовательностью.

Сначала вы отключаете автоматы на панели стабика.

Потом сам переключатель переводите в положение ТРАНЗИТ или БАЙПАС.

И только затем снова включаете автоматы.

Многие забывают об этом и делают переключение под нагрузкой. Что в итоге приводит к поломкам.

С 3-х позиционным автоматом такое исключено. Вы автоматически переключаете напряжение, без каких либо манипуляций на стабилизаторе. И все это одной клавишей!

Никакой последовательности запоминать не нужно. Так что данную процедуру можно смело доверять любому члену семьи.

3 Использование для подключения кабеля меньшего сечения чем вводной

Вы можете выбирать меньшее сечение, только когда запитываете отдельные электроприемники.

Если же у вас на стабилизаторе сидит весь дом, то будьте добры соблюдать параметры по вводу согласно всей общедомовой нагрузке.

4 Отсутствие наконечников на многожильных проводах

Почему-то многие забывают, что зачастую через стабилизатор проходит вся нагрузка вашего дома. Ровно такая же как и на вводом автомате.

При этом в электрощите все провода обжаты, даже на выключателях освещения с минимальными токами, а вот на клеммниках стабилизатора или его автоматах, постоянно можно встретить голый провод просто поджатый винтом.

Поэтому не скупитесь, и заранее вместе с аппаратом приобретайте соответствующие наконечники.

5 Выбивает общий автомат в щитке

Иногда после подключения стабилизатора, начинает выбивать вводной автомат. При этом без стабилизатора, все нормально и ничего не отключается.

Многие сразу грешат на неправильную схему подключения или дефект аппарата. Везут его на гарантийный ремонт и т.п.

А причина может быть совсем в другом. Если у вас через чур низкое напряжение 150-160В, то при его повышении до стандартных 220-230В, ток в сети значительно вырастет.

Отсюда и все проблемы. Обращайте на это внимание, прежде чем нести его обратно в магазин.

Стабилизатор сетевого напряжения 220В - это устройство, которое выравнивает напряжение из питающей сети, до определенного значения, и отдаёт потребителям стабильные 220 вольт, независимо от скачков и просадок на линии. Установка такого прибора обеспечит защиту электрических приборов от ненормальных режимов работы, таких как и высокий или низкий его уровень. В этой статье мы рассмотрим устройство и принцип работы стабилизаторов напряжения, а также разновидности данных устройств и область их применения.

Определение

Стабилизатор напряжения (СН) - это устройство, предназначенное для преобразования входного нестабильного напряжения из электросети: заниженного, завышенного или с периодическими скачками, в стабильное по величине на выходе устройства и подключенных к нему электроприборах.

Перефразируем для чайников: стабилизатор делает так, чтобы для подключенных к нему приборов напряжение всегда было одинаковым и близким к 220В независимо от того, каким оно поступает на его вход: 180, 190, 240, 250 Вольт или вообще плавает.

Отметим, что 220В или 240В это стандартная величина для РФ, Беларуси, Украины и так далее. Но в некоторых странах ближнего и дальнего зарубежья оно может быть другим, например 110В. Соответственно «наши» стабилизаторы там работать не будут.

Стабилизаторы бывают разных : как для работы в цепях постоянного тока (линейные и импульсные, параллельного и последовательного типов), так и для работы в цепях переменного тока. Последние часто называют «стабилизаторы сетевого напряжения» или просто «стабилизаторы 220В». Если говорить простым языком, то такие стабилизаторы подключают к электросети, а уже к нему подключают потребители.

В быту СН используют для защиты как отдельных приборов, например, для холодильника или компьютера, так и для защиты всего дома, в этом случае мощный стабилизатор устанавливается на ввод.

Классификация

Конструкция стабилизаторов зависит от физических принципов, на которых они работают. В связи с этим они подразделяются на:

  • электромеханические;
  • феррорезонансные;
  • инверторные;
  • полупроводниковые;
  • релейные.

По количеству фаз могут быть однофазными и трехфазными. Большой диапазон мощностей позволяет выпускать стабилизаторы как для дома, так и для небольших бытовых приборов:

  • для телевизора;
  • для газового котла;
  • для холодильника.

Так и для для крупных объектов:

  • промышленных агрегатов (например, трехфазные промышленные стабилизаторы Сатурн);
  • цехов, зданий.

Стабилизаторы достаточно энергоэффективны. Потребление электроэнергии составляет от 2 до 5%. Некоторые стабилизирующие устройства могут иметь дополнительные защиты:

  • от ;
  • от ;
  • от ;
  • от перепадов частоты.

Принцип действия

Стабилизаторы напряжения бывают разных типов, каждый из которых отличается принципом регулирования. Эти отличия мы рассмотрим далее. Если обобщить принцип работы и структуру всех типов, то стабилизатор сетевого напряжения состоит из 2 основных частей:

  1. Система управления - отслеживает уровень входного напряжения и даёт команду силовой части увеличить или уменьшить его, чтобы на выходе получились стабильные 220В в пределах установленной погрешности (точности регулирования). Эта погрешность лежит в пределах 5-10% и у каждого прибора отличается.
  2. Силовая часть - в сервоприводных (или сервомоторных), релейных и электронных (симисторных) - это автотрансформатор, с помощью которого входное напряжение повышается или понижается до нормального уровня, а в инверторных стабилизаторах, или как их еще называют «с двойным преобразованием» - используется инвертор. Это устройство, которое состоит из генератора (ШИМ-контроллер), трансформатора и силовых ключей (транзисторов), которые пропускают или отключают ток через первичную обмотку трансформатора, формируя выходное напряжение нужной формы, частоты и, что самое главное - величины.

Если напряжение на входе в норме, то у некоторых моделей стабилизаторов есть функция «байпас» или «транзит», когда входное напряжение просто подаётся на выход до тех пор, пока не выйдет из заданного диапазона. Например, от 215 до 225 вольт будет включен «байпас», а при больших колебаниях, допустим, при просадке до 205-210В - система управления переключит цепь на силовую часть и начнет регулировку, повысит напряжение и на выходе будут уже стабильные 220В с заданной погрешностью.

Плавная и самая точная регулировка выходного напряжения у инверторных СН, на втором месте - сервоприводные, а у релейных и электронных регулировка происходит ступенчато, и точность зависит от количества ступеней. Как упоминалось выше, лежит в пределах 10%, чаще около 5%.

Кроме упомянутых выше двух частей в стабилизаторе напряжения 220В есть и блок защиты, а также источник вторичного электропитания для цепей системы управления, тех же защит и других функциональных элементов. Общее устройство наглядно демонстрирует картинка ниже:

В то же время схема работы в простейшей форме выглядит так:

Вкратце рассмотрим, как работают стабилизаторы напряжения основных типов.

Релейные

В релейном стабилизаторе регулирование происходит за счет переключения реле. Эти реле замыкают определенные контакты трансформатора, повышая или понижая выходное напряжение.

Контролирующим органом выступает электронная микросхема. Элементы на ней сравнивают опорное и сетевое напряжение. При несоответствии отдается сигнал переключающим реле на подключение повышающих или понижающих обмоток автотрансформатора.

Релейные СН обычно регулируют электроэнергию в пределах ± 15% с точностью на выходе от ± 5% до ± 10%.

Преимущества релейных стабилизаторов:

  • дешевизна;
  • компактность.

Недостатки:

  • медленная реакция на колебания напряжения;
  • небольшой срок службы;
  • низкая надежность;
  • при переключениях возможны кратковременное отключение питания приборов;
  • неспособны выдерживать перенапряжения;
  • шум, щелчки при переключениях.

Сервоприводные

Основные элементы сервостабилизаторов это автотрансформатор и сервомотор. При отклонении напряжения от нормы контроллер отдает сигнал сервомотору, который переключает нужные обмотки автотрансформатора. В итоге применения такой системы обеспечивается плавное регулирование и точность до 1% от общего диапазона.

В сервоприводном СН один конец первичной обмотки трансформатора подключен к жесткому ответвлению автотрансформатора, а второй конец первичной обмотки подключен к подвижному контакту (графитовой щетке), который передвигается серводвигателем. Один вывод вторичной обмотки трансформатора подключен к входному источнику питания, а второй вывод подключен к выходу стабилизатора напряжения.

Плата управления сравнивает входное и опорное напряжение. При любых отклонениях от заданных вступает в работу сервопривод. Он перемещает щетку по ответвлениям автотрансформатора. Серводвигатель будет продолжать работать, пока разность между опорным и выходным напряжением станет равным нулю. Весь этот процесс, от поступления электроэнергии плохого качества до выхода стабилизированного тока, проходит за десятки миллисекунд и ограничен скоростью перемещения щетки сервоприводом.

Сервоприводные стабилизаторы сетевого напряжения производят в различном исполнении.

  1. Однофазные. Состоят из одного автотрансформатора и одного сервопривода.
  2. Трехфазные. Подразделяются на два типа. Сбалансированные – имеют три трансформатора и один сервопривод и одну цепь управления. Регулирование осуществляется на всех трех фазах одновременно. Используются для защиты трехфазных электрических аппаратов, станков, приборов. Несимметричные – имеют три автотрансформатора, три серводвигателя и три цепи управления. То есть стабилизация происходит в каждой фазе, независимо друг от друга. Область применения: защита электрооборудования зданий, цехов, промышленных объектов.

Достоинства сервоприводных стабилизирующих устройств:

  • быстродействие;
  • высокая точность стабилизации;
  • высокая надежность;
  • стойкость к перенапряжениям;

Недостатки:

  • нуждаются в периодическом обслуживании;
  • требуют минимальных навыков настройки устройства.

Инверторные

Основным отличием этого типа СН является отсутствие подвижных частей и трансформатора. Регулирование напряжения осуществляется методом двойного преобразования. На первом этапе входной переменный ток выпрямляется и проходит через фильтр пульсаций, состоящий из . После этого выпрямленный ток поступает на инвертор, где опять преобразуется в переменный и подаётся в нагрузку. При этом выходное напряжение стабильно как по величине, так и по частоте.

В следующем ролике вы узнаете о принципе работы одного из вариантов реализации преобразователя напряжения из 12В постоянного тока, в 220В переменного тока. Который от инверторного стабилизатора напряжения отличается в первую очередь входным напряжением, в остальном принцип работы во многом похож и видео позволит понять как работает этот тип устройств:

Достоинства:

  • быстродействие (самое высокое из перечисленных);
  • большой диапазон регулируемого напряжения (от 115 до 300В);
  • высокий коэффициент полезного действия (более 90%);
  • бесшумная работа;
  • малые габариты;
  • плавное регулирование.

Недостатки:

  • уменьшение диапазона регулирования при увеличении нагрузки;
  • высокая стоимость.

Вот мы и рассмотрели, как работает стабилизатор напряжения, для чего он нужен и где применяется. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы

Стабилизаторы напряжения – это довольно интересные приборы. Когда давным-давно, еще в советскую эпоху массового строительства «хрущевок» и «брежневок» такой прибор был почти обязательным соседом телевизора: считалось, что включать «квадратного друга» прямо в розетку чревато. Потом телевизоры все-таки стали включать в сеть «прямо так» - и ничего... Стабилизаторы превратились в реликты – но ненадолго. С появлением в обиходе бытовых компьютеров стабилизаторы вернулись и вновь заняли свое почетное место – на этот раз в виде колодок с несколькими розетками. Зачем же нужны стабилизаторы напряжения и почему они вернулись? Попробуем ответить на этот вопрос...

Зачем они были нужны вчера...

Начнем с того, зачем стабилизаторы напряжения были нужны когда-то... Тут ответ более-менее прост – те, кто заселялся в новые квартиры в 60-70-х годах прошлого века, возможно и сами еще помнят, что в первые несколько месяцев (а то и лет) колебания напряжения в бытовой сети сильно отклонялись от положенных 220 вольт. Что было заметно невооруженным глазом – лампочки время от времени начинали светить вполсилы, а иногда перегорали; изображение на экране черно-белых еще телеприемников при этом тоже бледнело и становилось едва различимым.

Причиной таких неприятностей было, как правило, подключение к сети массы новых потребителей, при котором выходное напряжение с трансформаторных подстанций делилось на сильно большее число – и оттого падало с 220 до 210, а то и 200 вольт. И наоборот – когда потребители от сети массово отключались (например – выключали все, что можно, уходя на работу), то напряжение в сети могло надолго подскочить до 240, а то и 250 вольт.


В таких условиях стабилизаторы напряжения были и в самом деле необходимы. Причем самые первые из них не были даже автоматическими – они представляли собой обычный трансформатор, по внешней обмотке которого надо было вручную перемещать клемму.

Со временем они уступили место феррорезонансным стабилизаторам, а когда в цветных телевизорах стали монтировать импульсные блоки питания, нужда в таких стабилизаторах напряжения и вовсе отпала – благо, что и сильные колебания напряжения в городской электросети ушли в прошлое. Сейчас эти колебания не превышают, как правило 5% , длятся не более минуты и наблюдаются, в основном, в сельской местности.

Зачем они нужны сегодня

Тем не менее, в конце 90-х стабилизаторы напряжения вернулись вновь. Их возвращение было связано с массовым распространением бытовых компьютеров, для которых даже и недолгие колебания напряжения могли оказаться фатальными. На стабилизаторы напряжения вновь возник спрос – и в многочисленных магазинах компьютерных аксессуаров вновь появились многорозеточные колодки...

...которые на самом деле сплошь и рядом стабилизаторами напряжения вовсе не были, поскольку отличались от набора обычных розеток только наличием параллельно вставленного конденсатора (иногда в сочетании с катушкой индуктивности). Который и в самом деле мог «подрезать» отдельные колебания напряжения при общей частоте 50 Гц – но и только. Впрочем, для большинства персональных компьютеров, тоже оснащенных импульсными блоками питания (ИБП), этого было достаточно.


Парадоксально, но факт – как раз самые, на первый взгляд «нежные» приборы – компьютеры и телевизоры - переносят колебания напряжения в сети лучше всего и менее всего нуждаются в настоящих стабилизаторах напряжения.

Тем не менее, электроприборы, которым нужен стабилизатор напряжения, в наших домах имеются – и в немалых количествах. Это прежде всего новые холодильники последних моделей – они часто имеют микропроцессорное управление, которое должно обеспечивать эффективную работу компрессора. А микропроцессоры весьма плохо переносят перепады напряжения. Та же картина наблюдается и со стиральными машинами – особенно с теми, которые рассчитаны на работу при напряжении 380 вольт. Плохо переносят перепады напряжения также микроволновки и посудомоечные машины. Ну и не стоит забывать еще и об электроприборах на дачах и в загородных домах - в том числе и тех, что отвечают за работу отопительных котлов.

Как работают стабилизаторы?

В общем, принцип работы стабилизаторов напряжения остался таким же, как и был: они по-прежнему представляют собой трансформатор, на одну обмотку которого подается электричество из розетки (которое может иметь напряжение и 198 и 240 вольт), а с другой – «снимается» именно 220 вольт. Нужное напряжение при этом получается за счет изменения числа витков на «домашней» обмотке, с которого напряжение подается.

Поэтому по сути главное различие между стабилизаторами напряжения сводится к том, как именно будет меняться рабочее число витков на «домашней» обмотке – плавно или скачками.

Регулирование напряжения «скачками» обеспечивают релейные стабилизаторы.

В таких стабилизаторах на «домашней» обмотке делаются выводы к реле, рассчитанным на 220 вольт. Если «домашнее» напряжение оказывается выше 220 – то несколько реле отключаются, уменьшая количество рабочих витков на домашней обмотке – и «домашнее» напряжение падает. Скорость срабатывания реле составляет от 10 до 20 миллисекунд, а повышение-понижение напряжения при каждом срабатывании может быть в разных моделях стабилизаторов от 1 до 5 вольта.

Главным достоинством релейных стабилизаторов является надежность и простота конструкции, а главным недостатком – некоторое собственное потребление. Ведь «домашний» ток проходит через обмотки всех реле и при этом расходуется – и чем больше реле в схеме, тем больше расход.

Плавное регулирование напряжения могут обеспечить тиристорные стабилизаторы, схема которых будет выглядеть примерно так.


По схеме нетрудно заметить, что тиристорный стабилизатор – это, по сути, тоже преобразователь переменного тока в постоянный и обратно. Плавность его работы покупается за счет использования гораздо большего количества гораздо более дорогих деталей.
Так что какой из стабилизаторов напряжения предпочесть в конкретных условиях – решать вам.

В обсуждениях электрических схем часто встречаются термины «стабилизатор напряжения» и «стабилизатор тока». Но какая между ними разница? Как работают эти стабилизаторы? В какой схеме нужен дорогой стабилизатор напряжения, а где достаточно простого регулятора? Ответы на данные вопросы вы найдёте в этой статье.

Рассмотрим стабилизатор напряжения на примере устройства LM7805.В его характеристиках указано: 5В 1,5А. Это значит стабилизирует он именно напряжение и именно до 5В. 1,5А - это максимальный ток, который может проводить стабилизатор. Пиковая сила тока. То есть от может отдать и 3 миллиампера, и 0,5 ампер, и 1 ампер. Столько, сколько тока требует нагрузка. Но не больше полутора. Это главное отличие стабилизатора напряжения от стабилизатора тока.

Виды стабилизаторов напряжения

Различают всего 2 основных типа стабилизаторов напряжения:

  • линейные
  • импульсные

Линейные стабилизаторы напряжения

Например, микросхемы КРЕН или , LM1117 , LM350 .

Кстати, КРЕН — это не аббревиатура, как многие думают. Это сокращение. Советская микросхема-стабилизатор, аналогичная LM7805 имела обозначение КР142ЕН5А. Ну а ещё есть КР1157ЕН12В, КР1157ЕН502, КР1157ЕН24А и куча других. Для краткости всё семейство микросхем стали называть «КРЕН». КР142ЕН5А тогда превращается в КРЕН142.

Советский стабилизатор КР142ЕН5А. Аналог LM7805.

Стабилизатор LM7805

Наиболее распространенный вид. Недостаток их в том, что они не могут работать на напряжении ниже, чем заявленное выходное напряжение. Если стабилизирует напряжение на 5 вольтах, то на вход ему подать нужно как минимум на полтора вольта больше. Если подать меньше 6,5 В, то выходное напряжение «просядет», и мы уже не получим 5 В. Еще один минус линейных стабилизаторов - сильный нагрев при нагрузке. Собственно, в этом и заключается принцип их работы — всё, что выше стабилизируемого напряжения, просто превращается в тепло. Если мы на вход подадим 12 В, то 7 потратятся на нагрев корпуса, а 5 пойдут потребителю. Корпус при этом нагреется настолько сильно, что без радиатора микросхема просто сгорит. Из всего этого вытекает ещё один серьёзный недостаток — линейный стабилизатор не стоит применять в устройствах с питанием от батареек. Энергия батареек будет тратиться на нагрев стабилизатора. Всех этих недостатков лишены импульсные стабилизаторы.

Импульсные стабилизаторы напряжения

Импульсные стабилизаторы - лишены недостатков линейных, но и стоят дороже. Это уже не просто микросхема с тремя выводами. Выглядят они, как плата с детальками.

Один из вариантов исполнения импульсного стабилизатора.

Импульсные стабилизаторы бывают трех видов: понижающие, повышающие и всеядные. Наиболее интересные - всеядные. Независимо от напряжения на входе, на выходе будет именно то, которое нам нужно. Всеядному импульснику все равно, что на входе напряжение ниже или выше нужного. Он сам автоматом переключается в режим повышения или понижения напряжения и держит заданное на выходе. Если в характеристиках заявлено, что стабилизатору на вход можно подать от 1 до 15 вольт и на выходе будет стабильно 5, то так оно и будет. Кроме того, нагрев импульсных стабилизаторов настолько незначителен, что в большинстве случаев им можно пренебречь. Если ваша схема будет питаться от батареек или размещаться в закрытом корпусе, где сильный нагрев линейного стабилизатора недопустим - ставьте импульсный. Я использую настраиваемые импульсные стабилизаторы напряжения за копейки, которые заказываю с Aliexpress. Купить можно .

Хорошо. А что со стабилизатором тока?

Не открою Америку, если скажу, что стабилизатор тока стабилизирует ток.
Токовые стабилизаторы ещё иногда называют светодиодным драйвером. Внешне они похожи на импульсные стабилизаторы напряжения. Хотя сам стабилизатор - маленькая микросхема, а всё остальное нужно для обеспечения правильного режима работы. Но обычно драйвером называют всю схему сразу.

Примерно так выглядит стабилизатор тока. Красным кружком обведена та самая схема, которая и является стабилизатором. Всё остальное на плате — обвязка.

Итак. Драйвер задаёт ток. Стабильно! Если написано, что на выходе будет ток в 350мА, то будет именно 350мА. А вот напряжение на выходе может меняется в зависимости от требуемого потребителем напряжения. Не будем пускаться в дебри теории о том. как всё это работает. Просто запомним, что вы напряжение не регулируете, драйвер сделает все за вас исходя из потребителя.

Ну так и зачем всё это нужно то?

Теперь вы знаете, чем стабилизатор напряжения отличается от стабилизатора тока и можете ориентироваться в их многообразии. Возможно, вам так и не стало понятно, зачем эти штуки нужны.

Пример: вы хотите запитать 3 светодиода от бортовой сети автомобиля. Как вы можете узнать из , для светодиода важно контролировать именно силу тока. Используем самый распространенный вариант соединения светодиодов: последовательно соединены 3 светодиода и резистор. Напряжение питания - 12 вольт.

Резистором мы ограничиваем ток на светодиоды, чтобы они не сгорели. Падение напряжения на светодиоде пусть будет у нас 3.4 вольта.
После первого светодиода остается 12-3.4= 8.6 вольт.
Нам пока хватает.
На втором потеряется еще 3.4 вольта, то есть останется 8.6-3.4=5.2 вольта.
И для третьего светодиода тоже хватит.
А после третьего останется 5.2-3.4=1.8 вольта.
При желании добавить четвёртый светодиод — уже не хватит.
Если напряжение питания поднять до 15В, то тогда хватит. Но тогда и резистор тоже надо будет пересчитать. Резистор - простейший стабилизатор (ограничитель) тока. Их часто ставят на те же ленты и модули. У него есть минус - чем ниже напряжение, тем меньше будет и ток на светодиоде (закон Ома, с ним не поспоришь). Значит, если входное напряжение нестабильно (в автомобилях обычно так и есть), то предварительно нужно стабилизировать напряжение, а потом можно ограничить резистором ток до необходимых значений. Если используем резистор, как токовый ограничитель там, где напряжение не стабильно, нужно стабилизировать напряжение.

Стоит помнить, что резисторы имеет смысл ставить только до определенной силы тока. После некоторого порога резисторы начинают сильно греться и приходится ставить более мощные резисторы (зачем резистору мощность рассказано в о этом приборе) . Тепловыделение растёт, КПД падает.

Тоже называют светодиодным драйвером. Часто те, кто не сильно разбирается в этом, стабилизатор напряжения называют просто драйвером светодиодов, а импульсный стабилизатор тока - хорошим светодиодным драйвером. Он выдаёт сразу стабильное напряжение и ток. И почти не нагревается. Вот так он выглядит:

Для многих потребителей стабилизатор напряжения до сих пор ассоциируется с шумной дребезжащей коробкой, установленной вблизи лампового телевизора советской эпохи, который, помимо прочего, с успехом мог бы выполнять еще и роль обогревателя небольшого помещения. И даже когда во время грозы выходит из строя дорогое устройство, не у каждого появляется понимание того, что при использовании хорошего стабилизатора такого бы не произошло.

Стабилизатор напряжения обеспечит защиту электрооборудования от колебаний сетевого напряжения, что позволит:

● продлить срок службы дорогостоящей техники и аппаратуры;

● предотвратить преждевременный выход бытовой техники и электроники из строя;

● сэкономить электроэнергию, поскольку на пониженных напряжениях электроприборы начинают потреблять больше мощности.

Для каких бытовых электроприборов требуются стабилизаторы?

Согласно ГОСТ, в российских электросетях допустимы отклонения в сети до 10%. Это в теории. В действительности же в нашей стране ГОСТ так и остается понятием сугубо теоретическим, и отклонения всего в 10% могут быть только в больших городах, и то в центральных районах. Для частного сектора, отдаленных микрорайонов и тем более для сельской местности отклонения в 10% - это роскошь. Всему виной так и не модернизированные электромагистрали, рассчитанные на потребности граждан 80-х годов.

В итоге на практике выходит так, что при малейшем шторме или сварочных работах поблизости даже самые современные модели бытовой техники в домах сгорают, и не спасают известные в народе “пилоты”. Кроме того, в российских реалиях прямым следствием нестабильного напряжения в сети является сокращение сроков службы электроприборов и электроники, по сравнению с заявленными производителем.

Учитывая реальную обстановку с российским электричеством, можно с уверенностью заявить, что 90% бытовой техники и электроники требуют стабилизации напряжения, а именно:

● телевизоры, поскольку входной диапазон их встроенных импульсных блоков питания в большинстве случаев более узкий, чем разбег напряжений в домашней сети, в результате чего ни блок питания, ни предохранители не защищают устройство от кратковременных, но критических скачков напряжения;

● холодильники, поскольку в них встроены от одного до двух компрессоров, работающих на асинхронных двигателях, обмотка которых греется, а потом и перегорает при напряжении ниже 210 В;

● кондиционеры, микроволновки, стиральные машины, насосы - греются и горят по той же причине, что и холодильники, плюс при пониженном или повышенном напряжении происходят сбои в работе их электронных блоков;

● электроприборы, оснащенные нагревательными элементами, - обогреватели, современные электроплиты и духовые шкафы, водонагреватели - на пониженном напряжении пытаются увеличить потребляемый ток, в связи с чем потребляют больше мощности, но выделяют меньше тепловой энергии;

● компьютерная техника - подвисает при низком напряжении и выходит из строя при высоком.

Получается довольно внушительный список домашних устройств, которые действительно нуждаются в качественном стабилизаторе напряжения .

Какой стабилизатор напряжения выбрать?

В настоящее время на рынке существует большой выбор стабилизаторов, отличных по типу регулирования выходного напряжения: электромеханические, релейные, тиристорные или симисторные, а также инверторные. Все они обладают различными значениями таких параметров, как скорость регулирования, предельный диапазон входного напряжения, точность стабилизации, уровень издаваемого шума при работе, однако любой из них способен скорректировать напряжение до того диапазона, в котором бытовая техника и электроника как минимум не будет сгорать. Тем не менее, при подборе устройства в каждом конкретном случае нужно заранее определиться с требуемыми значениями указанных параметров и выбрать максимально соответствующий им прибор. Это позволит как обеспечить подходящий уровень защиты подключаемого к стабилизатору оборудования, так и сэкономить, не купив решение с лучшими характеристиками, чем требуется. Если же вы хотите приобрести самую современную модель, с которой можно забыть о любых проблемах с качеством напряжения, то вам, очевидно, стоит сделать выбор в пользу инверторных стабилизаторов напряжения, которые отличаются мгновенным быстродействием, высокой точностью и самым широким диапазоном допустимого входного напряжения. Данные приборы естественно немного дороже решений старого поколения, но такая в общем-то небольшая инвестиция в хороший стабилизатор позволит гарантированно сохранить более серьезные вложения в дорогостоящую технику.



Статьи по теме