Схема работы биполярного транзистора. Включение транзисторов по схеме с общей базой ОБ

Являются биполярные транзисторы. Схемы включения зависят от того, какая у них проводимость (дырочная или электронная) и выполняемые функции.

Классификация

Транзисторы разделяют на группы:

  1. По материалам: чаще всего используются арсенид галлия и кремний.
  2. По частоте сигнала: низкая (до 3 МГц), средняя (до 30 МГц), высокая (до 300 МГц), сверхвысокая (выше 300 МГц).
  3. По максимальной мощности рассеивания: до 0,3 Вт, до 3 Вт, более 3 Вт.
  4. По типу устройства: три соединенных слоя полупроводника с поочередным изменением прямого и обратного способов примесной проводимости.

Как работают транзисторы?

Наружные и внутренний слои транзистора соединены с подводящими электродами, называемыми соответственно эмиттером, коллектором и базой.

Эмиттер и коллектор не отличаются друг от друга типами проводимости, но степень легирования примесями у последнего значительно ниже. За счет этого обеспечивается увеличение допустимого выходного напряжения.

База, являющаяся средним слоем, обладает большим сопротивлением, поскольку сделана из полупроводника со слабым легированием. Она имеет значительную площадь контакта с коллектором, что улучшает отвод тепла, выделяющегося из-за обратного смещения перехода, а также облегчает прохождение неосновных носителей - электронов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством. При перемене мест крайних слоев с одинаковой проводимостью невозможно получить аналогичные параметры полупроводникового устройства.

Схемы включения способны поддерживать его в двух состояниях: он может быть открытым или закрытым. В активном режиме, когда транзистор открыт, эмиттерное смещение перехода сделано в прямом направлении. Чтобы наглядно это рассмотреть, например, на полупроводниковом триоде типа n-p-n, на него следует подать напряжение от источников, как изображено на рисунке ниже.

Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Но на практике происходит обратное из-за близкого расположения переходов друг к другу и их взаимного влияния. Поскольку к эмиттеру подключен «минус» батареи, открытый переход позволяет электронам поступать в зону базы, где происходит их частичная рекомбинация с дырками - основными носителями. Образуется базовый ток I б. Чем он сильней, тем пропорционально больше ток на выходе. На этом принципе работают усилители на биполярных транзисторах.

Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. Благодаря незначительной толщине слоя (микроны) и большой величине отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Там их втягивает электрическое поле перехода, способствующее их активному переносу. Коллекторный и эмиттерный токи практически равны между собой, если пренебречь незначительной потерей зарядов, вызванных рекомбинацией в базе: I э = I б + I к.

Параметры транзисторов

  1. Коэффициенты усиления по напряжению U эк /U бэ и току: β = I к /I б (фактические значения). Обычно коэффициент β не превышает значения 300, но может достигать величины 800 и выше.
  2. Входное сопротивление.
  3. Частотная характеристика - работоспособность транзистора до заданной частоты, при превышении которой переходные процессы в нем не успевают за изменениями подаваемого сигнала.

Биполярный транзистор: схемы включения, режимы работы

Режимы работы отличаются в зависимости от того, как собрана схема. Сигнал должен подаваться и сниматься в двух точках для каждого случая, а в наличии имеются только три вывода. Отсюда следует, что один электрод должен одновременно принадлежать входу и выходу. Так включаются любые биполярные транзисторы. Схемы включения: ОБ, ОЭ и ОК.

1. Схема с ОК

Схема включения с общим коллектором: сигнал поступает на резистор R L , который входит также в коллекторную цепь. Такое подключение называют схемой с общим коллектором.

Этот вариант создает только усиление по току. Преимущество эмиттерного повторителя состоит в создании большого сопротивления входа (10-500 кОм), что позволяет удобно согласовывать каскады.

2. Схема с ОБ

Схема включения биполярного транзистора с общей базой: входящий сигнал поступает через С 1 , а после усиления снимается в выходной коллекторной цепи, где электрод базы является общим. В таком случае создается усиление по напряжению аналогично работе с ОЭ.

Недостатком является небольшое сопротивление входа (30-100 Ом), и схема с ОБ применяется как генератор колебаний.

3. Схема с ОЭ

Во многих вариантах, когда применяются биполярные транзисторы, схемы включения преимущественно делаются с общим эмиттером. Питающее напряжение подается через нагрузочный резистор R L , а к эмиттеру подключается отрицательный полюс внешнего питания.

Переменный сигнал со входа поступает на электроды эмиттера и базы (V in), а в коллекторной цепи он становится уже больше по величине (V CE). Основные элементы схемы: транзистор, резистор R L и цепь выхода усилителя с внешним питанием. Вспомогательные: конденсатор С 1 , препятствующий прохождению постоянного тока в цепь подаваемого входного сигнала, и резистор R 1 , через который транзистор открывается.

В коллекторной цепи напряжения на выходе транзистора и на резисторе R L вместе равны величине ЭДС: V CC = I C R L + V CE .

Таким образом, небольшим сигналом V in на входе задается закон изменения постоянного напряжения питания в переменное на выходе управляемого транзисторного преобразователя. Схема обеспечивает возрастание входного тока в 20-100 раз, а напряжения - в 10-200 раз. Соответственно, мощность также повышается.

Недостаток схемы: небольшое сопротивление входа (500-1000 Ом). По этой причине появляются проблемы в формировании Выходное сопротивление составляет 2-20 кОм.

Приведенные схемы демонстрируют, как работает биполярный транзистор. Если не принять дополнительных мер, на их работоспособность будут сильно влиять внешние воздействия, например перегрев и частота сигнала. Также заземление эмиттера создает нелинейные искажения на выходе. Чтобы повысить надежность работы, в схеме подключают обратные связи, фильтры и т. п. При этом коэффициент усиления снижается, но устройство становится более работоспособным.

Режимы работы

На функции транзистора влияет значение подключаемого напряжения. Все режимы работы можно показать, если применяется представленная ранее схема включения биполярного транзистора с общим эмиттером.

1. Режим отсечки

Данный режим создается, когда значение напряжения V БЭ снижается до 0,7 В. При этом эмиттерный переход закрывается, и коллекторный ток отсутствует, поскольку нет свободных электронов в базе. Таким образом, транзистор заперт.

2. Активный режим

Если на базу подать напряжение, достаточное, чтобы открыть транзистор, появляется небольшой входной ток и повышенный на выходе, в зависимости от величины коэффициента усиления. Тогда транзистор будет работать как усилитель.

3. Режим насыщения

Режим отличается от активного тем, что транзистор полностью открывается, и ток коллектора достигает максимально возможного значения. Его увеличения можно достигнуть только за счет изменения прикладываемой ЭДС или нагрузки в цепи выхода. При изменении базового тока коллекторный не меняется. Режим насыщения характеризуется тем, что транзистор предельно открыт, и здесь он служит переключателем во включенном состоянии. Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи.

Все режимы работы зависят от характера выходных характеристик, изображенных на графике.

Их можно наглядно продемонстрировать, если будет собрана схема включения биполярного транзистора с ОЭ.

Если отложить на осях ординат и абсцисс отрезки, соответствующие максимально возможному коллекторному току и величине напряжения питания V CC , а затем соединить их концы между собой, получится линия нагрузки (красного цвета). Она описывается выражением: I C = (V CC - V CE)/R C . Из рисунка следует, что рабочая точка, определяющая ток коллектора I C и напряжение V CE , будет смещаться по нагрузочной линии снизу вверх при увеличении тока базы I В.

Зона между осью V CE и первой характеристикой выхода (заштрихована), где I В = 0, характеризует режим отсечки. При этом обратный ток I C ничтожно мал, а транзистор закрыт.

Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении I В коллекторный ток уже не изменяется. Зоной насыщения на графике является заштрихованная область между осью I C и самой крутой характеристикой.

Как ведет себя транзистор в разных режимах?

Транзистор работает с переменными или постоянными сигналами, поступающими во входную цепь.

Биполярный транзистор: схемы включения, усилитель

Большей частью транзистор служит в качестве усилителя. Переменный сигнал на входе приводит к изменению его выходного тока. Здесь можно применить схемы с ОК или с ОЭ. В выходной цепи для сигнала требуется нагрузка. Обычно используют резистор, установленный в выходной коллекторной цепи. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.

Работу усилителя хорошо видно на временных диаграммах.

Когда преобразуются импульсные сигналы, режим остается тем же, что и для синусоидальных. Качество преобразования их гармонических составляющих определяется частотными характеристиками транзисторов.

Работа в режиме переключения

Предназначены для бесконтактной коммутации соединений в электрических цепях. Принцип заключается в ступенчатом изменении сопротивления транзистора. Биполярный тип вполне подходит под требования ключевого устройства.

Заключение

Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Универсальные возможности и большая классификация позволяют широко применять биполярные транзисторы. Схемы включения определяют их функции и режимы работы. Многое также зависит от характеристик.

Основные схемы включения биполярных транзисторов усиливают, генерируют и преобразуют входные сигналы, а также переключают электрические цепи.

Биполярные транзисторы это полупроводниковые приборы с тремя электродами, подключенными к трем последовательно находящимся слоям, с различной проводимости. В отличие от других транзисторов, которые переносят один тип заряда, он способен переносить сразу два типа.

Схемы подключения, использующие биполярные транзисторы, зависят от производимой работы и типа проводимости. Проводимость может быть электронной, дырочной.

Разновидности биполярных транзисторов

Биполярные транзисторы разделяют по различным признакам на виды по:

  • Материалу изготовления : кремний или арсенид галлия.
  • Величине частоты : до 3 МГц – низкая, до 30 МГц – средняя, до 300 МГц – высокая, более 300 МГц – сверхвысокая.
  • Наибольшей рассеиваемой мощности : 0-0,3 Вт, 0,3-3 Вт, свыше 3 Вт.
  • Типу прибора : 3 слоя полупроводника с последовательной очередностью типа проводимости.

Устройство и работа

Слои транзистора, как внутренний, так и наружный, объединены с встроенными электродами, которые имеют свои названия в виде базы, эмиттера и коллектора.

Особых отличий по видам проводимости у коллектора и эмиттера не наблюдается, однако процент включения примесей у коллектора намного меньше, что позволяет повысить допустимое напряжение на выходе.

Средний слой полупроводника (база) имеет большую величину сопротивления, так как выполнена из слаболегированного материала. Она контактирует с коллектором на значительной площади. Это позволяет повысить теплоотвод, который необходим вследствие выделения тепла от смещения перехода в другую сторону. Хороший контакт базы с коллектором дает возможность легко проходить электронам, которые являются неосновными носителями.

Слои перехода выполнены по одному принципу. Однако биполярные транзисторы считаются несимметричными приборами. При чередовании крайних слоев местами с одной проводимостью нельзя образовать подобные параметры полупроводника.

Схемы подключения транзисторов выполнены таким образом, что могут обеспечить ему как закрытое, так и открытое состояние. При активной работе, когда полупроводник открыт, смещение эмиттера выполнено в прямом направлении. Для полного понимания этой конструкции, нужно подключить напряжение питания по изображенной схеме.

При этом граница на 2-м переходе коллектора закрыта, ток через нее не идет. Практически возникает обратное явление ввиду рядом расположенных переходов, их влияния друг на друга. Так как к эмиттеру подсоединен минусовой полюс батареи, то переход открытого вида дает возможность электронам проходить на базу, в которой осуществляется их рекомбинация с дырками, являющимися главными носителями. Появляется ток базы I б. Чем выше базовый ток, тем больше выходной ток. В этом заключается принцип действия усилителей.

По базе протекает только диффузионное движение электронов, так как нет работы электрического поля. Из-за малой толщины этого слоя и значительном градиенте частиц, практически все они поступают на коллектор, хотя база имеет большое сопротивление. На переходе имеется электрическое поле, которое способствует переносу и втягивает их. Токи эмиттера и коллектора одинаковые, если не считать малой потери заряда от перераспределения на базе: I э = I б + I к .

Характеристики

  • Коэффициент усиления тока β = I к / I б .
  • Коэффициент усиления напряжения U эк / U бэ .
  • Сопротивление на входе.
  • Характеристика частоты – возможность работы транзистора до определенной частоты, при выходе за границы которой процессы перехода опаздывают за изменением сигнала.

Режимы работ и схемы

Вид схемы влияет на режим действия биполярного транзистора. Сигнал может сниматься и отдаваться в двух местах для разных случаев, а электродов имеется три штуки. Следовательно, что один произвольный электрод должен быть сразу выходом и входом. По такому принципу подключаются все биполярные транзисторы, и имеют три вида схем, которые мы рассмотрим ниже.

Схема с общим коллектором

Сигнал проходит на сопротивление R L , которое также включено в цепь коллектора.

Такая схема подключения дает возможность создать всего лишь усилитель по току. Достоинством такого эмиттерного повторителя можно назвать образование значительного сопротивления на входе. Это дает возможность для согласования каскадов усиления.

Схема с общей базой

В схеме можно найти недостаток в виде малого входного сопротивления. Схема с общей базой используется чаще всего в качестве генератора колебаний.

Схема с общим эмиттером

Чаще всего при использовании биполярных транзисторов выполняют схему с общим эмиттером. Напряжение проходит по сопротивлению нагрузки R L , к эмиттеру питание подключается отрицательным полюсом.

Сигнал переменного значения приходит на базу и эмиттер. В цепи коллектора он становится по значению больше. Главными элементами схемы являются резистор, транзистор и выходная цепь усилителя с источником питания. Дополнительными элементами стали: емкость С 1 , которая не дает пройти току на вход, сопротивление R 1 , благодаря которому открывается транзистор.

В цепи коллектора напряжение транзистора и сопротивления равны значению ЭДС: E= Ik Rk +Vke .

Отсюда следует, что малым сигналом Ec определяется правило изменения разности потенциалов в переменное выходное транзисторного преобразователя. Такая схема дает возможность увеличению тока входа во много раз, так же, как напряжению и мощности.

Из недостатков такой схемы можно назвать малое сопротивление на входе (до 1 кОм). Как следствие, возникают проблемы в образовании каскадов. Сопротивление выхода равно от 2 до 20 кОм.

Рассмотренные схемы показывают действие биполярного транзистора. На его работу влияет частота сигнала и перегрев. Для решения этого вопроса применяют дополнительные отдельные меры. Эмиттерное заземление образует на выходе искажения. Для создания надежности схемы, выполняют подключение фильтров, обратных связей и т.д. После таких мер, схема работает лучше, но уменьшается усиление.

Режимы работы

На быстродействие транзистора оказывает влияние величина подключаемого напряжения. Рассмотрим разные режимы работы на примере схемы, в которой биполярные транзисторы подключаются с общим эмиттером.

Отсечка

Этот режим образуется при снижении напряжения V БЭ до 0,7 вольта. В таком случае переход эмиттера закрывается, и ток на коллекторе отсутствует, так как в базе отсутствуют электроны, и транзистор остается закрытым.

Активный режим

При подаче напряжения, достаточного для открытия транзистора, на базу, возникает малый ток входа и большой выходной ток. Это зависит от размера коэффициента усиления. В этом случае транзистор работает усилителем.

Режим насыщения

Эта работа имеет свои отличия от активного режима. Полупроводник открывается до конца, коллекторный ток достигает наибольшего значения. Его повышения можно добиться только путем изменения нагрузки, либо ЭДС выходной схемы. При корректировке тока базы ток коллектора не изменяется. Режим насыщения имеет особенности в том, что транзистор открыт полностью и работает переключателем. Если объединить режимы насыщения и отсечки биполярных транзисторов, то можно создать ключи.

Свойства характеристик выхода влияют на режимы. Это изображено на графике.

При отложении на осях координат отрезков, соответствующих наибольшему току коллектора и размеру напряжения, и далее, объединения концов друг с другом, образуется красная линия нагрузки. По графику видно: точка тока и напряжения сместится по линии нагрузки вверх при повышении базового тока.

Участок между заштрихованной характеристикой выхода и осью Vke является работа отсечки. В этом случае транзистор закрыт, а обратная величина тока мала. Характеристика в точке А вверху пересекается с нагрузкой, после которой при последующем повышении I В ток коллектора уже не меняется. На графике участком насыщения является закрашенная часть между осью Ik и наиболее крутым графиком.

Биполярные транзисторы в различных режимах

Транзистор взаимодействует с сигналами разных видов во входной цепи. В основном транзистор применяется в усилителях. Входной переменный сигнал изменяет ток на выходе. В этом случае используются схемы с общим эмиттером или коллектором. В цепи выхода для сигнала необходима нагрузка.

Чаще всего для этого применяют сопротивление, установленное в цепи выхода коллектора. При его правильном выборе, значение напряжения на выходе будет намного больше, чем на входе.

Во время преобразования сигнала импульсов режим сохраняется таким же, как для синусоидальных сигналов. Качество изменения гармоник определяется характеристиками частоты полупроводников.

Режим переключения

Транзисторные ключи служат для бесконтактных переключений в электрических цепях. Эта работа заключается в прерывистой регулировке величины сопротивления полупроводника. Биполярные транзисторы наиболее применимы в устройствах переключения.

Полупроводники применяются в схемах изменения сигналов. Их универсальная работа и широкая классификация дает возможность использовать транзисторы в различных цепях, которые определяют их возможности работы. Основными применяемыми схемами являются усиливающие, а также переключающие цепи.

– один из двух основных видов транзисторов, изготавливается в виде трёхэлектродного полупроводникового прибора. В каждом из этих проводников имеются последовательно расположенные слои обладающие n-проводимостью (примесной) или p-проводимостью (дырочной). Таким образом, формируются биполярные транзисторы n-p-n или p-n-p типов.

Три электрода в биполярном транзисторе подключены соответственно к каждому из трёх проводящих слоёв.

В момент работы биполярного транзистора происходит одновременная передача разнотипных зарядов, переносимых электронами и дырками. То есть всего задействовано два типа зарядов, потому этот транзистор и носит название «биполярный» («би» означает «два).

Рис.1: Устройство биполярного транзистора.

Соединённый со средним слоем электрод обозначается как «база». Два крайних электрода именуются «коллектор» и «эмиттер». По типу проводимости два этих канала одинаковы. Однако, с целью получения устройства с необходимыми характеристиками, слой, соединённый с эмиттером, делают более легированными примесями, а соединённый с коллектором – наоборот. Как результат, допустимое коллекторное напряжение увеличивается. Учёт уровня обратного напряжения, при котором происходит пробой эмиттерного перехода, не столь важен, поскольку для сборки электронной схемы обычно применяют модели с прямым смещением по эмиттерному p-n-переходу, что превращает схему практически в проводник. Помимо прочего, легированный эмиттерный слой облегчает переход неосновных носителей в центральный проводящий слой, способствуя увеличению коэффициента преобразования по току в схеме с ОБ (общей базой).

Также, в модифицированной конструкции коллекторный p-n-переход по размерам значительно превосходит эмиттерный. Данный параметр обусловлен необходимостью улучшения сбора неосновных носителей, поступающих из слоя базы, и подъёма коэффициента передачи.

Быстродействие биполярных транзисторов зависит от толщины базового слоя: чем он толще, тем медленнее функционирует вся схема. Но крайне истончать этот слой тоже нельзя. При уменьшении толщины уменьшается и временной отрезок, требующийся для прохождения неосновных носителей через тело базового слоя, но вместе с тем происходит значительное уменьшение предельного коллекторного напряжения. Поэтому подбор правильного размера базы осуществляется с учётом обоих этих явлений.

Устройство и принцип действия

Рис.2: Планарный биполярный n-p-n транзистор в поперечном разрезе

Самые первые модели биполярных транзисторов выполнялись с применением металлического германия (полупроводниковый материал). На данный момент для этих целей используется монокристаллический кремний и монокристаллический арсенид галлия.

Рис.3: Монокристаллы кремния и арсенида галлия

Наиболее быстродействующими устройствами являются те, в которых задействован арсенид галлия. По этой причине их наиболее часто применяют как элементы сверхбыстродействующих логических схем и схем сверхвысокочастотных усилителей.

Как уже говорилось выше, структура биполярного транзистора складывается из эмиттерного, базового и коллекторного слоёв с различным уровнем легированности, и каждый слой соединён со своим электродом, представленный омическим (невыпрямляющим) контактом.

Слаболегированный базовый слой транзистора отличается большим уровнем омического сопротивления.

При соотнесении контактов эмиттер-база и коллектор-база можно отметить, что первый уступает по размерам второму.

Подобная конструкция обусловлена следующими моментами:

  • Большой коллекторно-базовый переход позволяет увеличить количество передаваемых от базы к коллектору неосновных носителей заряда (ННЗ);
  • На момент активной работы К-Б-переход функционирует в условиях обратного смещения, что вызывает сильное тепловыделение в зоне коллекторного перехода, поэтому, чтобы улучшить его теплоотводность приходится увеличивать площадь.

Таким образом «идеальный» симметричный биполярный транзистор фигурирует только в теоретических выкладках, а перенос теорию на практическую базу демонстрирует, что наибольшим КПД обладают именно те модели, которые не обладают симметрией.

В режиме активного усиления в транзисторе происходит прямое смещение Э-перехода (он становится открытым), и обратное смещение К-перехода (он становится закрытым). В противоположной ситуации, при закрытии Э-перехода и открытии К-перехода происходит инверсное включение биполярного транзистора.

Если подробнее рассматривать процесс функционирования транзисторов n-p-n типа, то в первую очередь наблюдается переход основных НЗ (носителей заряда) из эмиттерного слоя по Э-Б-переходу в базовый слой. Часть НЗ, представленных электронами взаимодействует с дырками базы, что приводит к нейтрализации обоих зарядов и сопутствующему выделению энергии. Тем не менее, базовый слой достаточно тонок и легирован достаточно слабо, это увеличивает общее время процесса взаимодействия, поэтому гораздо большее количество эмиттерных НЗ успевает проникнуть в коллекторный слой. Кроме того, сказывается действие силы электрического поля, образуемого смещённым коллекторным переходом. Благодаря этой силе значительно увеличивается количество перетягиваемых из базового слоя электронов.

В результате, значение коллекторного тока практически равняется эмиттерному за вычетом потерь в базовом слое, которыми и исчисляется ток самой базы. Для вычисления значения коллекторного тока используется формула:

где Iк – коллекторный ток, Iэ – эмиттеный ток, α– коэффициент передачи тока эмиттера.

Спектр значений коэффициента α варьируется от 0,9 до 0,99. Большие значения позволяют производить более эффективную трансляцию тока транзистором. Величина α при этом не определяется тем, какое напряжение демонстрируют К-Б и Б-Э переходы. Как результат, в условиях множества вариантов рабочего напряжения сохраняется пропорциональное соотношение между Iк и Iб. Для нахождения коэффициента данной пропорциональности применяется формула:

β = α/(1 − α).

Значения β могут находиться в диапазоне 10-100. Отсюда можно сделать вывод о том, что для регуляции работы большого коллекторного тока, вполне можно обходиться током малой силы на базе.

Разновидности порядка действия биполярных транзисторов

Нормальный активный режим

Характеристика:

  1. Открытая эмиттерно-базовая область (смещение по прямому направлению);
  2. Закрытая коллекторно-базовая область (смещение по обратному направлению);
  3. Положительный уровень напряжения в эмиттерно-базовой области;
  4. Отрицательный уровень напряжения в коллекторно-базовой области.

Пункты 3 и 4 приведены для p-n-p транзисторов. Для моделей с n-p-n структурой характеристика будет обратной данной.

Инверсный активный режим

Характеристика:

  1. Обратное смещение на эмиттерном переходе;
  2. Прямое смещение на коллекторным переходе.

Остальные пункты как для нормального активного режима.

Режим насыщения

Характеристика:

  1. Соединение Э-перехода и К-перехода с внешними источниками;
  2. Прямое смещение эмиттерного и коллекторного перехода;
  3. Ослабление диффузного электрического поля из-за электрического поля внешних источников;
  4. Снижение уровня потенциального барьера, что приведёт к ослаблению контроля диффузии основных НЗ, а также смещению большого количества дырок из эмиттерных и коллекторных областей в область базы.

Вследствие последнего пункта происходит формирование эмиттерных и коллекторных токов насыщения (Iэ.нас. и Iк.нас.)

В этом же режиме фигурирует понятие «напряжение насыщения» на переходе К-Э. Благодаря ему можно определить степень падения напряжения для открытого транзистора. Подобным образом напряжение насыщения для перехода Б-Э определяет степень падения напряжения для приведённого участка.

Режим отсечки

Характеристика:

  • Смещение по обратному направлению в К-области;
  • Смещение Э-перехода по любому направлению, при условии, что оно не превысит пороговый показатель, который отграничивает начало процесса испускания электронов эмиттером в базовый слой.

Уровень приведённого показателя в случае с кремниевым биполярным транзистором достигает 0,6-0,7 Вольт, значит режим отсечки возможен при нулевой силе тока на базе, либо при уровне напряжения менее 0,7 Вольт на Э-Б переходе.

Барьерный режим

Характеристика:

  • Соединение базового сегмента и коллектора на коротко, либо с применением малогабаритного резистора;
  • Производится подключение резистора к коллекторной или эмиттерной цепи, чтобы он мог задавать ток посредством транзисторного элемента.

Действие в представленном режиме преобразует полупроводниковый триод в аналог диода с последовательным подключением к токозадающему резистору. Каскад, построенный в соответствии с данной схемой,имеет небольшое количество составляющих и почти не зависит от характеристик используемого устройства.

Схемы включения

Для характеристики включающей транзисторной схемы применяются два значимых показателя:

  • Величина коэффициента фиксирующего усиление по току, которое вычисляется через отношение тока выхода (Iвых) к току входа (Iвх);
  • Значение входного сопротивления (Rвх), которое вычисляется через отношение входного напряжения (Uвх) к току входа (Iвх).

Включение с общей базой (ОБ)

Рис.4: Усилитель с ОБ

Характеристика:

  • Вариант схемы, при котором уровень сопротивления на входе является самым низким, а выходе – самым высоким;
  • По α (коэффициенту усиления по току) приближается к 1;
  • Обладает большим Кu (коэффициентом усиления по напряжению);
  • Не происходит инвертации фазы сигнала.

Для определения коэффициента α необходимо вычислить отношение тока коллектора к току эмиттера (иначе – отношение тока выхода к току входа).

Для определения входного сопротивления Rвх следует вычислить соотношение входного напряжения и входного тока (иначе – соотношение напряжения на переходе Э-Б и эмиттерного тока). Значение этого параметра для схем с ОБ достигает максимум 100 Ом (в биполярном транзисторе малой мощности).

Плюсы применения схем включения с ОБ

  • Хорошее температурное и частотное значение;
  • Высокий уровень допустимого напряжения.

Минусы применения схем включения с ОБ

  • Незначительная степень усиления по току (поскольку, значение коэффициента α не достигает единицы);
  • Низкий уровень входного сопротивления;
  • Работа обеспечивается двумя разными источниками напряжения.

Включение с общим эмиттером (ОЭ)

Характеристика:

  • Ток на выходе соответствует току коллектора;
  • Ток на входе соответствует току базы;
  • Напряжение на входе соответствует напряжению на Б-Э переходе;

Вычислить коэффициент β (усиление по току) для данной схемы можно, через отношение тока выхода к току входа (тока коллектора к току базы; тока коллектора к разности эмиттерного и коллекторного токов).

Для определения входного сопротивления (Rвх) высчитывается отношение напряжения на входе к току на входе (напряжения на Б-Э переходе к току на базе).

  • Большое значение коэффициента β;
  • Большое значение коэффициента усиления по напряжению;
  • Самый высокий уровень усиления мощности;
  • Задействуется только один источник питания;
  • Происходит инвертация выходного напряжения (по отношению к входному).

Плюсы применения схем включения с ОЭ

  • Температурное и частотное значение гораздо ниже относительно схем включения с ОБ.

Включение с общим коллектором (ОК)

Характеристика:

  • Ток на выходе соответствует току на эмиттере;
  • Ток на входе соответствует величине тока в области базы;
  • Напряжение на входе соответствует напряжению на Б-К переходе;
  • Напряжение на выходе соответствует напряжению на К-Э переходе.

Вычисление β показателя осуществляется через отношение тока на выходе к току на входе (тока в области эмиттера к току в области базы; тока эмиттерной области к разнице Э и К тока).

Величина сопротивления на входе определяется по отношению напряжения на входе к току на входе (отношению суммы напряжений на Б-Э и К-Э переходах к токовому показателю на базе).

Схема с данным типом подключения носит название эмиттерного повторителя.

Плюсы эксплуатации схем включения с ОК

  • Значительный уровень сопротивления на входе;
  • Низкий уровень сопротивления на выходе.

Минусы эксплуатации схем включения с ОК

  • Величина показателя, характеризующего усиление по напряжению, не достигает единицы.

Значимые показатели у биполярных транзисторов

  • Величина показателя, характеризующего передачу по току;
  • Уровень сопротивления на выходе;
  • Величина выходной проводимости;
  • Величина обратного К-Э тока;
  • Время, требуемое для включения;
  • Уровень предельной частоты показателя, характеризующего передачу тока базы;
  • Величина обратного тока в коллекторной области;
  • Величина максимально допустимого тока;
  • Уровень граничной частоты показателя, характеризующего передачу тока (для схем с ОЭ).

Существует деление определяющих качеств биполярного транзистора на две основные группы. Первая группа параметров определяет перечень признаков, проявляющихся при работе транзистора, но не зависящих от использованного типа подключения. Сюда относятся:

  • Величина показателя усиления по току α;
  • Общее сопротивление эмиттера;
  • Общее сопротивление коллектора;
  • Значение сопротивления на базе по поперечному направлению.

Если говорить о параметрах второй группы, то они меняются согласно использованной схеме включения. Кроме того, необходимо учитывать отсутствие линейности транзисторных свойств, поэтому перечень вторичных характеристик можно применять только по отношению к низкоуровневым частотам и импульсам с малой амплитудой.

Вторичными параметрами считают:

  • Уровень сопротивления на входе;
  • Значение показателя демонстрирующего обратную связь по напряжению;
  • Величина показателя передачи тока;
  • Уровень выходной проводимости.

Помимо вышеперечисленных моментов следует учитывать, что высокая частота влечёт за собой снижение ёмкостного сопротивления, снижение силы тока и последующее уменьшение величин коэффициентов α и β. Частотный показатель, вызывающий уменьшение α и β на 3 дБ обозначается как граничный.

Сферы применения

Полупроводниковые триоды могут использоваться для создания:

  • Усилителей, каскадов усиления;
  • Генераторов сигналов;
  • Модуляторов;
  • Демодуляторов (детекторов);
  • Инверторов (логических элементов) и т.д.

Дополнительную информацию можно найти на http://www.aistsoft.ru/ . Система АИСТ крупный ресурс данных по специализированной информации(технические описания, паспорта, чертежи, сертификаты и другое).

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Биполярный транзистор является одним из старейших, но самым известным типом транзисторов, и до сих пор находит применение в современной электронике. Транзистор незаменим, когда требуется управлять достаточно мощной нагрузкой, для которой устройство управления не может обеспечить достаточный ток. Они бывают разного типа и мощности, в зависимости от исполняемых задач. Базовые знания и формулы о транзисторах вы можете найти в этой статье.

Введение

Прежде чем начать урок, давайте договоримся, что мы обсуждаем только один тип способ включения транзистора. Транзистор может быть использован в усилителе или приемнике, и, как правило, каждая модель транзисторов производится с определенными характеристиками, чтобы сделать его более узкоспециализированым для лучшей работы в определённом включении.

Транзистор имеет 3 вывода: база, коллектор и эмиттер. Нельзя однозначно сказать какой из них вход, а какой выход, так как все они связаны и влияют друг на друга так или иначе. При включении транзистора в режиме коммутатора (управление нагрузкой) он действует так: ток базы контролирует ток от коллектора к эмиттеру или наоборот, в зависимости от типа транзистора.

Есть два основных типа транзисторов: NPN и PNP. Чтобы это понять, можно сказать, что основное различие между этими двумя типами это направления электрического тока. Это можно видеть на рисунке 1.А, где указано направление тока. В транзисторе NPN, один ток течет от основания внутрь транзистора, а другой ток течет от коллектора к эмиттеру, а в PNP транзисторе всё наоборот. С функциональной точки зрения, разница между этими двумя типами транзисторов это напряжение на нагрузке. Как вы можете видеть на рисунке, транзистор NPN обеспечивает 0В когда он открыт, а PNP обеспечивает 12В. Вы позже поймете, почему это влияет на выбор транзистора.

Для простоты мы будем изучать только NPN транзисторы, но всё это применимо к PNP, принимая во внимание, что все токи меняются на противоположные.

Рисунок ниже показывает аналогию между переключателем (S1) и транзисторным ключом, где видно, что ток базы закрывает или открывает путь для тока от коллектора к эмиттеру:

Точно зная характеристики транзистора, от него можно получить максимальную отдачу. Основным параметром является коэффициент усиления транзистора по постоянному току, который обычно обозначается H fe или β. Также важно знать максимальный ток, мощность и напряжение транзистора. Эти параметры можно найти в документации на транзистор, и они помогут нам определить значение резистора на базе, о чем рассказано дальше.

Использование NPN транзистора как коммутатора

На рисунке показано включение NPN транзистора в качестве коммутатора. Вы встретите это включение очень часто при анализе различных электронных схем. Мы будем изучать, как запустить транзистор в выбранном режиме, рассчитать резистор базы, коэффициент усиления транзистора по току и сопротивление нагрузки. Я предлагаю самый простой и самый точный способ для этого.

1. Предположим, что транзистор находится в режиме насыщения: При этом математическая модель транзистора становится очень простой, и нам известно напряжение на точке V c . Мы найдем значение резистора базы, при котором всё будет правильно.

2. Определение тока насыщения коллектора: Напряжение между коллектором и эмиттером (V ce) взято из документации транзистора. Эмиттер подключен к GND, соответственно V ce = V c - 0 = V c . Когда мы узнали эту величину, мы можем рассчитать ток насыщения коллектора по формуле:

Иногда, сопротивления нагрузки R L неизвестно или не может быть точным, как сопротивление обмотки реле; В таком случае, достаточно знать, необходимый для запуска реле ток.
Убедитесь, что ток нагрузки не превышает максимальный ток коллектора транзистора.

3. Расчет необходимого тока базы: Зная ток коллектора, можно вычислить минимально необходимый ток базы для достижения этого тока коллектора, используя следующую формулу:

Из неё следует что:

4. Превышение допустимых значений: После того как вы рассчитали ток базы, и если он оказался ниже указанного в документации, то можно перегрузить транзистор, путем умножения расчетного тока базы например в 10 раз. Таким образом, транзисторный ключ будет намного более устойчивым. Другими словами, производительность транзистора уменьшится, если нагрузка увеличится. Будьте осторожны, старайтесь не превышать максимальный ток базы, указанный в документации.

5. Расчёт необходимого значения R b: Учитывая перегрузку в 10 раз, сопротивление R b может быть рассчитано по следующей формуле:

где V 1 является напряжением управления транзистором (см. рис 2.а)

Но если эмиттер подключен к земле, и напряжение база-эмиттер известно (около 0,7В у большинстве транзисторов), а также предполагая, что V 1 = 5V, формула может быть упрощена до следующего вида:

Видно, что ток базы умножается на 10 с учётом перегрузки.
Когда значение R b известно, транзистор "настроен" на работу в качестве переключателя, что также называется "режим насыщения и отсечки ", где "насыщение" - когда транзистор полностью открыт и проводит ток, а "отсечение" – когда закрыт и ток не проводит.

Примечание: Когда мы говорим , мы не говорим, что ток коллектора должен быть равным . Это просто означает, что ток коллектора транзистора может подниматься до этого уровня. Ток будет следовать законам Ома, как и любой электрический ток.

Расчет нагрузки

Когда мы считали, что транзистор находится в режиме насыщения, мы предполагали что некоторые его параметры не менялись. Это не совсем так. На самом деле эти параметры менялись в основном за счет увеличения тока коллектора, и поэтому он является более безопасным для перегрузки. В документации указано изменение параметров транзистора при перегрузке. Например, в таблице на рисунке 2.В показано два параметра которые значительно меняются:

H FE (β) меняется в зависимости от тока коллектора и напряжения V CEsat . Но V CEsat само меняется в зависимости от тока коллектора и базы, что показано в таблице дальше.

Расчет может быть очень сложным, так как все параметры тесно и сложно взаимосвязаны, поэтому лучше взять худшие значения. Т.е. наименьший H FE , крупнейший V CEsat и V CEsat .

Типичное применение транзисторного ключа

В современной электронике транзисторный ключ используется для контроля электромагнитных реле, которое потребляют до 200 мА. Если вы хотите управлять реле логической микросхемой или микроконтроллером то транзистор незаменим. На рисунке 3.A, сопротивления резистора базы рассчитывается в зависимости от необходимого для реле тока. Диод D1 защищает транзистор от импульсов, которые катушка генерирует при выключении.

2. Подключение транзистора с открытым коллектором:

Многие устройства, такие как семейство микроконтроллеров 8051 имеют порты с открытым коллектором. Сопротивление резистора базы внешнего транзистора рассчитывается, как описано в этой статье. Заметим, что порты могут быть более сложными, и часто используют полевые транзисторы вместо биполярных и называются выходами с открытым стоком, но всё остаётся точно таким же как на рисунке 3.B

3. Создание логического элемента ИЛИ-НЕ (NOR):

Иногда в схеме необходимо использовать один логический элемент, и вы не хотите использовать 14-контактную микросхему с 4 элементами либо из-за стоимости или местом на плате. Её можно заменить парой транзисторов. Отметим, что частотные характеристики таких элементов зависят от характеристик и типа транзисторов, но обычно ниже 100 кГц. Уменьшение выходного сопротивления (Ro) приведет к увеличению потребления энергии, но увеличит выходной ток.
Вам надо найти компромисс между этими параметрами.

На рисунке выше показан логический элемент ИЛИ-НЕ построенный с использованием 2х транзисторов 2N2222. Это может быть сделано на транзисторах PNP 2N2907, с незначительными изменениями. Вы просто должны учитывать, что все электрические токи тогда текут в противоположном направлении.

Поиск ошибок в транзисторных схемах

При возникновении проблемы в цепях, содержащих много транзисторов, может быть весьма проблематично узнать, какой из них неисправен, особенно когда они все впаяны. Я даю вам несколько советов, которые помогут вам найти проблему в такой схеме достаточно быстро:

1. Температура: Если транзистор сильно греется, вероятно, где-то есть проблема. Необязательно что проблема в горячем транзисторе. Обычно дефектный транзистор даже не нагревается. Это повышение температуры может быть вызвано другим транзистором, подключенным к нему.

2. Измерение V CE транзисторов: Если они все одного типа и все работают, то они должны иметь приблизительно одинаковое VCE. Поиск транзисторов, имеющих различные V CE это быстрый способ обнаружения дефектных транзисторов.

3. Измерение напряжения на резисторе базы: Напряжение на резисторе базы достаточно важно (если транзистор включен). Для 5 В устройства управления транзистором NPN, падения напряжения на резисторе должно быть более 3В. Если нет падения напряжения на резисторе, то либо транзистор, либо устройство управления транзистора имеют дефект. В обоих случаях ток базы равен 0.

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ


Биполярным транзистором называют полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и предназначеный для усиления сигнала.

Биполярные транзисторы являются полупроводниковыми приборами универсального назначения и широко применяются в различных усилителях, генераторах, в импульсных и ключевых устройствах.

Биполярные транзисторы можно классифицировать по материалу: германиевые и кремниевые; по виду проводимости: типа р- n -р и n - p - n ; по мощности: малая (Р мах < 0,3Вт), средняя (Р мах = 1,5Вт) и большая (Р мах > 1,5Вт); по частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.

В таких транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок. Отсюда пошло их название: биполярные.

Биполярный транзистор представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n -р- n средняя область имеет дырочную, а крайние области – электронную электропроводность.

Транзисторы типа р- n -р имеют среднюю область с электронной, а крайние - с дырочной проводностью.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, вторая – коллектором. Таким образом в транзисторе имеются два р- n - перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором.

Эмиттером - это область транзистора для инжекции носителей заряда в базу. Коллектором - область, назначением которой является извлечение носителей заряда из базы. Базой называется область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера гораздо выше проводимости базы, а проводимость коллектора меньше проводимости эмиттера.

В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

Принцип действия транзистора на примере транзистора р- n -р –типа, включенного по схеме с общей базой (ОБ).

Внешние напряжения двух источников питания ЕЭ и Е к подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода П1 в прямом направлении, а коллекторного перехода П2 – в обратном направлении.

Если к коллекторному переходу приложено обратное напряжение, а цепь эмиттера разомкнута, то в цепи коллектора протекает небольшой обратный ток I ко . Он возникает под действием обратного напряжения и создается направленным перемещением неосновных носителей заряда дырок базы и электронов коллектора через коллекторный переход. Обратный ток протекает по цепи: +Е к , база-коллектор, −Е к .

При включении в цепь эмиттера постоянного напряжения ЕЭ в прямом направлении потенциальный барьер эмиттерного перехода понижается. Начинается инжектирование дырок в базу.

Внешнее напряжение, приложенное к транзистору, оказывается приложенным в основном к переходам П1 и П2, т.к. они имеют большое сопротивление по сравнению с сопротивлением базовой, эмиттерной и коллекторной областей. Поэтому инжектированные в базу дырки перемещаются в ней посредством диффузии. При этом дырки рекомбинируют с электронами базы. Поскольку концентрация носителей в базе значительно меньше, чем в эмиттере, то рекомбинируют очень немногие дырки. При малой толщине базы почти все дырки будут доходить до коллекторного перехода П2. На место рекомбинированных электронов в базу поступают электроны от источника питания Е к . Дырки, рекомбинировавшие с электронами в базе, создают ток базы I Б.

Под воздействием обратного напряжения Е к, потенциальный барьер коллекторного перехода повышается, а толщина перехода П2 увеличивается. Вошедшие в область коллекторного перехода дырки попадают в ускоряющее поле, созданное на переходе коллекторным напряжением, и втягиваются коллектором, создавая коллекторный ток I к . Коллекторный ток протекает по цепи: +Е к , база-коллектор, -Е к .

Таким образом, в б иполярном транзисторе протекает три вида тока: эмиттера, коллектора и базы.

В проводе, являющемся выводом базы, токи эмиттера и коллектора направлены встречно. Ток базы равен разности токов эмиттера и коллектора: I Б = I Э − I К.

Физические процессы в транзисторе типа n -р- n протекают аналогично процессам в транзисторе типа р- n -р.

Полный ток эмиттера I Э определяется количеством инжектированных эмиттером основных носителей заряда. Основная часть этих носителей заряда достигая коллектора, создает коллекторный ток I к . Незначительная часть инжектированных в базу носителей заряда рекомбинируют в базе, создавая ток базы I Б. Следовательно, ток эмиттера разделятся на токи базы и коллектора, т.е. I Э = I Б + I к .

Выходной ток транзистора зависит от входного тока. Поэтому транзистор- прибор, управляемый током.

Изменения тока эмиттера, вызванные изменением напряжения эмиттерного перехода, полностью передаются в коллекторную цепь, вызывая изменение тока коллектора. А т.к. напряжение источника коллекторного питания Е к значительно больше, чем эмиттерного Е э , то и мощность, потребляемая в цепи коллектора Р к , будет значительно больше мощности в цепи эмиттера Р э . Таким образом, обеспечивается возможность управления большой мощностью в коллекторной цепи транзистора малой мощностью, затрачиваемой в эмиттерной цепи, т.е. имеет место усиление мощности.

Схемы включения биполярных транзисторов

Транзистор, в схему включают так, что один из его выводов является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК . Для транзистора n -р- n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора, полярность включения источников питания должна быть выбрана такой, чтоб эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.

Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

Характеристики транзистора, включенного по схеме ОБ

I Э = f (U ЭБ) при U КБ = const (а).

I К = f (U КБ) при I Э = const (б).

Статические характеристики биполярного транзистора, включенного по схеме ОБ. Выходные ВАХ имеют три характерные области: 1 – сильная зависимость I к от U КБ; 2 – слабая зависимость I к от U КБ; 3 – пробой коллекторного перехода. Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения U КБ.

Характеристики транзистора, включенного по схеме ОЭ:

Входной характеристикой является зависимость:

I Б = f (U БЭ) при U КЭ = const (б).

Выходной характеристикой является зависимость:

I К = f (U КЭ) при I Б = const (а).


Режим работы биполярного транзистора

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р- n - перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р- n - перехода открыты), то транзистор работает в режиме насыщения. В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы - усиление, генерирация.

усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером. Основными элементами схемы являются источник питания Е к , управляемый элемент – транзистор VT и резистор R к . Эти элементы образуют выходную цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы. Другие элементы схемы выполняют вспомогательную роль. Конденсатор С р является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Е к .

Резистор R Б, включенный в цепь базы, обеспечивает работу транзистора при отсутствии входного сигнала. Режим покоя обеспечивается током базы покоя I Б = Е к / R Б. С помощью резистора R к создается выходное напряжение. R к выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

Е к = U кэ + I к R к ,

сумма падения напряжения на резисторе R к и напряжения коллектор-эмиттер U кэ транзистора всегда равна постоянной величине – ЭДС источника питания Е к .

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Е к в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.



Статьи по теме