Расчет усилителя с общим эмиттером. Биполярный транзистор в схеме с общим эмиттером

Название полупроводникового прибора транзистор образовано из двух слов: transfer – передача + resist – сопротивление. Потому что его действительно можно представить в виде некоторого сопротивления, которое будет регулироваться напряжением одного электрода. Транзистор иногда еще называют полупроводниковым триодом.

Создан первый биполярный транзистор был в 1947 году, а в 1956 году за его изобретение трое ученых были удостоены нобелевской премии по физике.

Биполярный транзистор – это полупроводниковый прибор, который состоит из трех полупроводников с чередующимся типом примесной проводимости. К каждому слою подключен и выведен электрод. В биполярном транзисторе используются одновременно заряды, носители которых электроны (n - “ negative ”) и дырки (p – “ positive ”), то есть носители двух типов, отсюда и образование приставки названия «би» - два.

Транзисторы различаются по типу чередования слоев:

P n p -транзистор (прямая проводимость);

Npn- транзистор (обратная проводимость).

База (Б) – это электрод, который подключен к центральному слою биполярного транзистора. Электроды от внешних слоев именуются эмиттер (Э) и коллектор (К).

Рисунок 1 – Устройство биполярного транзистора

На схемах обозначаются « VT », в старой русскоязычной документации можно встретить обозначения «Т», «ПП» и «ПТ». Изображаются биполярные транзисторы на электрических схемах, в зависимости от чередования проводимости полупроводников, следующим образом:


Рисунок 2 – Обозначение биполярных транзисторов

На рисунке 1, изображенном выше, отличие между коллектором и эмиттером не видны. Если посмотреть на упрощенное представление транзистора в разрезе, то видно, что площадь p - n перехода коллектора больше чем у эмиттера.


Рисунок 3 – Транзистор в разрезе

База изготовляется из полупроводника со слабой проводимостью, то есть сопротивление материала велико. Обязательное условие – тонкий слой базы для возможности возникновения транзисторного эффекта. Так как площадь контакта p - n перехода у коллектора и эмиттера разные, то менять полярность подключения нельзя. Эта характерность относит транзистор к несимметричным устройствам.

Биполярный транзистор имеет две ВАХ (вольт амперные характеристики): входную и выходную.

Входная ВАХ – это зависимость тока базы (I Б ) от напряжения база-эмиттер (U БЭ ).



Рисунок 4 – Входная вольтамперная характеристика биполярного транзистора

Выходная ВАХ – это зависимость тока коллектора (I К ) от напряжения коллектор-эмиттер (U КЭ ).



Рисунок 5 – Выходная ВАХ транзистора

Принцип работы биполярного транзистора рассмотрим на npn типе, для pnp аналогично, только рассматриваются не электроны, а дырки. Транзистор имеет два p-n перехода . В активном режиме работы один из них подключен с прямым смещением, а другой – обратным. Когда переход ЭБ открыт, то электроны с эмиттера легко перемещаются в базу (происходит рекомбинация). Но, как говорилось ранее, слой базы тонкий и проводимость ее мала, по этому часть электронов успевает переместиться к переходу база-коллектор. Электрическое поле помогает преодолеть (усиливает) барьер перехода слоев, так как электроны здесь неосновные носители. При увеличении тока базы, переход эмиттер-база откроется больше и с эмиттера в коллектор сможет проскочить больше электронов. Ток коллектора пропорционален току базы и при малом изменении последнего (управляющий), коллекторный ток значительно меняется. Именно так происходит усиления сигнала в биполярном транзисторе.



Рисунок 6 – Активный режим работы транзистора

Смотря на рисунок можно объяснить принцип действия транзистора чуть проще. Представьте себе, что КЭ – это водопроводная труба, а Б – кран, с помощью которого Вы можете управлять потоком воды. То есть, чем больше ток вы подадите на базу, тем больше получите на выходе.

Значение коллекторного тока почти равно току эмиттера, исключая потери при рекомбинации в базе, которая и образовывает ток базы, таким образом справедлива формула:

І Э =І Б +І К.

Основные параметры транзистора:

Коэффициент усиления по току – отношение действующего значения коллекторного тока к току базы.

Входное сопротивление – следуя закону Ома оно будет равно отношению напряжения эмиттер-база U ЭБ к управляющему току I Б .

Коэффициент усиления напряжения – параметр находится отношением выходного напряжения U ЭК к входному U БЭ .

Частотная характеристика описывает способность работы транзистора до определенной, граничной частоты входного сигнала. После превышения предельной частоты физические процессы в транзисторе не будут успевать происходить и его усилительные способности сведутся на нет.

Схемы включения биполярных транзисторов

Для подключения транзистора нам доступны только его три вывода (электрода). По этому для его нормальной работы требуются два источника питания. Один электрод транзистора будет подключаться к двум источникам одновременно. Следовательно, существуют 3 схемы подключения биполярного транзистора: ОЭ – с общим эмиттером, ОБ – общей базой, ОК – общим коллектором. Каждая обладает как преимуществами, так и недостатками, в зависимости от области применения и требуемых характеристик делают выбор подключения.

Схема включения с общим эмиттером (ОЭ) характеризуется наибольшим усилением тока и напряжения, соответственно и мощности. При данном подключении происходит смещение выходного переменного напряжения на 180 электрических градусов относительно входного. Основной недостаток – это низкая частотная характеристика, то есть малое значение граничной частоты, что не дает возможность использовать при высокочастотном входном сигнале.

(ОБ) обеспечивает отличную частотную характеристику. Но не дает такого большого усиления сигнала по напряжению как с ОЭ. А усиление по току не происходит совсем, поэтому данную схему часто называют токовый повторитель, потому что она имеет свойство стабилизации тока.

Схема с общим коллектором (ОК) имеет практически такое же усиление по току как и с ОЭ, а вот усиление по напряжению почти равно 1 (чуть меньше). Смещение напряжения не характерно для данной схемы подключения. Ее еще называю эмиттерный повторитель, так как напряжение на выходе (U ЭБ ) соответствуют входному напряжению.

Применение транзисторов:

Усилительные схемы;

Генераторы сигналов;

Электронные ключи.

Схема с ОЭ обладает наибольшим коэффициентом усиления по мощности, поэтому остается наиболее распространенным решением для высокочастотных усилителей, систем GPS, GSM, WiFi. В настоящее время она обычно применяется в виде готовых интегральных микросхем (MAXIM, VISHAY, RF Micro Devices), но, не зная основы ее работы, практически невозможно получить параметры, приведенные в описании микросхемы.Именно поэтому при приеме на работу и поиске сотрудников основным требованием является знание принципов работы усилителей с ОЭ.

Усилитель, каким бы он не был, (усилитель аудио, ламповый усилитель или усилитель радиочастоты) представляет собой четырехполюсник, у которого два вывода являются входом и два вывода являются выходом. Структурная схема включения усилителя приведена на рисунке 1.


Рисунок 1 Структурная схема включения усилителя

Основной усилительный элемент — транзистор имеет всего три вывода, поэтому один из выводов транзистора приходится использовать одновременно для подключения источника сигнала (как входной вывод) и подключения нагрузки (как выходной вывод). Схема с общим эмиттером — это усилитель, где эмиттер транзистора используется как для подключения входного сигнала, так и для подключения нагрузки. Функциональная схема усилителя с транзистором, включенным по схеме с общим эмиттером приведена на рисунке 2.


Рисунок 2 Функциональная схема включения транзистора с общим эмиттером

На данной схеме пунктиром показаны границы усилителя, изображенного на рисунке 1. На ней не показаны цепи питания транзистора. В настоящее время схема с общим эмиттером практически не применяется в звуковых усилителях, однако в схемах усилителей телевизионного сигнала, усилителях GSM или других высокочастотных усилителях она находит широкое применение. Для питания транзистора в схеме с общим эмиттером можно использовать два источника питания, однако для этого потребуется два стабилизатора напряжения. В аппаратуре с батарейным питанием это может быть проблематично, поэтому обычно применяется один источник питания. Для питания усилителя с общим эмиттером может подойти любая из рассмотренных нами схем:

  • схема с эмиттерной стабилизацией.

Рассморим пример схемы усилителя с общим эмиттером и эмиттерной стабилизацией режима работы транзистора. На рисунке 3 приведена каскада на биполярном npn-транзисторе, предназначенная для усиления звуковых частот.


Рисунок 3 Принципиальная схема усилительного каскада с общим эмиттером

Расчет элементов данной схемы по постоянному току можно посмотреть в статье . Сейчас нас будут интересовать параметры , собранного по схеме с общим эмиттером. Его наиболее важными характеристиками является входное и выходное сопротивление и коэффициент усиления по мощности. В основном эти характеристики определяются параметрами транзистора.

Входное сопротивление схемы с общим эмиттером

В схеме с общим эмиттером входное сопротивление транзистора R вхОЭ можно определить по его входной характеристике. Эта характеристика совпадает с вольтамперной характеристикой p-n перехода. Пример входной характеристики кремниевого транзистора (зависимость напряжения U б от тока базы I б) приведен на рисунке 4.


Рисунок 4 Входная характеристика кремниевого транзистора

Как видно из этого рисунка, входное сопротивление транзистора R вхОЭ зависит от тока базы I б0 и определяется по следующей формуле:

(1)

Как определить ΔU б0 и ΔI б0 в окрестностях рабочей точки транзистора в схеме с общим эмиттером показано на рисунке 5.


Рисунок 5 Определение входного сопротивления схемы с общим эмиттером по входной характеристике кремниевого транзистора

Определение сопротивления по формуле (1) является наиболее точным способом определения входного сопротивления. Однако при расчете усилителя мы не всегда имеем под рукой транзисторы, которые будем использовать, поэтому было бы неплохо иметь возможность рассчитать входное сопротивление аналитическим способом. Вольтамперная характеристика p-n перехода хорошо аппроксимируется экспоненциальной функцией.

(2)

где I б — ток базы в рабочей точке;
U бэ — напряжение базы в рабочей точке;
I s — обратный ток перехода эмиттер-база;
— температурный потенциал;
k — постоянная Больцмана;
q — заряд электрона;
T — температура, выраженная в градусах Кельвина.

В этом выражении коэффициентом, нормирующим экспоненту, является ток I s , поэтому чем точнее он будет определен, тем лучше будет совпадение реальной и аппроксимированной входных характеристик транзистора. Если в выражении (2) пренебречь единицей, то напряжение на базе транзистора можно вычислить по следующей формуле:

(3)

Из выражения (1) видно, что входное сопротивление является производной напряжения на базе транзистора по току. Продифференцируем выражение (3), тогда входное сопротивление схемы с общим эмиттером можно определить по следующей формуле:

(4)

Однако график реальной входной характеристики транзистора, включенного по схеме с общим эмиттером, отличается от экспоненциальной функции. Это связано с тем, что омическое сопротивление полупроводника в базе транзистора не равно нулю, поэтому при больших базовых токах транзистора в схеме с общим эмиттером ее входное сопротивление будет стремиться к омическому сопротивлению базы r бб" .

Входной ток схемы с общим эмиттером протекает не только через входное сопротивление транзистора, но и по всем резисторам цепей формирования напряжения на базе транзистора. Поэтому входное сопротивление схемы с общим эмиттером определяется как параллельное соединение всех этих сопротивлений. Пути протекания входного тока по схеме с общим эмиттером показаны на рисунке 6.


Рисунок 6 Протекание тока по входным цепям схемы с общим эмиттером

Значительно проще вести анализ данной схемы по эквивалентной схеме входной цепи, где приведены только те цепи, по которым протекает входной ток от источника сигнала. Эквивалентная схема входной цепи схемы с общим эмиттером приведена на рисунке 7.


Рисунок 7 Эквивалентная схема входной цепи схемы с общим эмиттером

Данная схема построена для средних частот с применением эквивалентной схемы транзистора. На средних частотах входная емкость транзистора не оказывает влияния, поэтому мы ее не отображаем на эквивалентной схеме. Сопротивление конденсатора C3 на средних частотах близко к нулю, поэтому на схеме нет элементов R4C3. Элементы R вых и h 21 ×i вх не влияют на входную цепь и изображены на схеме для отображения усилительных свойств транзистора.

И, наконец, мы можем записать формулу входного сопротивления схемы с общим эмиттером:

(5)

После изготовления усилителя, рассчитанного по приведенным выше методикам необходимо измерить входное сопротивление схемы с общим эмиттером. Для измерения входного сопротивления используют схему измерения входного сопротивления усилителя, изображенную на рисунке 8. В данной схеме для измерения входного сопротивления используются измерительный генератор переменного напряжения и два высокочастотных вольтметра переменного тока (можно воспользоваться одним и сделать два измерения).


Рисунок 8 Схема измерения входного сопротивления усилительного каскада

В случае, если сопротивление R и будет равно входному сопротивлению усилителя, напряжение, которое покажет вольтметр переменного тока V2, будет в два раза меньше напряжения V1. В случае, если нет возможности изменять сопротивление R и при измерении входного сопротивления, входное сопротивление усилителя можно вычислить по следующей формуле:

(6)

Выходное сопротивление схемы с общим эмиттером

Выходное сопротивление транзистора зависит от конструктивных особенностей транзистора, толщины его базы, объемного сопротивления коллектора. Выходное сопротивление транзистора, включенного по схеме с общим эмиттером, можно определить по выходным характеристикам транзистора. Пример выходных характеристик транзистора приведен на рисунке 9.


Рисунок 9 Выходные характеристики кремниевого транзистора

К сожалению, в характеристиках современных транзисторов выходные характеристики обычно не приводятся. Связано это с тем, что их выходное сопротивление достаточно велико и выходное сопротивление транзисторного каскада с общим эмиттером определяется сопротивлением нагрузки. В схеме, приведенной на рисунке 6, это сопротивление резистора R3.

Дата последнего обновления файла 31.05.2018

Литература:

Вместе со статьей "Схема с общим эмиттером (каскад с общим эмиттером)" читают:


http://сайт/Sxemoteh/ShTrzKask/KollStab/


http://сайт/Sxemoteh/ShTrzKask/EmitStab/

Транзистор, в схему включают так, что один из его выводов является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК. Для транзистора n-р-n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора, полярность включения источников питания должна быть выбрана такой, чтоб эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.

Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

Характеристики транзистора, включенного по схеме об

IЭ = f(UЭБ) при UКБ = const (а).

IК = f(UКБ) при IЭ = const (б).

Статические характеристики биполярного транзистора, включенного по схеме ОБ. Выходные ВАХ имеют три характерные области: 1 – сильная зависимость Iк от UКБ; 2 – слабая зависимость Iк от UКБ; 3 – пробой коллекторного перехода. Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения UКБ.

Характеристики транзистора, включённого по схеме оэ:

Входной характеристикой является зависимость:

IБ = f(UБЭ) при UКЭ = const (б).

Выходной характеристикой является зависимость:

IК = f(UКЭ) при IБ = const (а).

Режим работы биполярного транзистора

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р-n- перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р-n- перехода открыты), то транзистор работает в режиме насыщения. В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы - усиление, генерация.

Усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером. Основными элементами схемы являются источник питания Ек, управляемый элемент – транзистор VT и резистор Rк. Эти элементы образуют выходную цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы. Другие элементы схемы выполняют вспомогательную роль. Конденсатор Ср является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Ек.

Резистор RБ, включенный в цепь базы, обеспечивает работу транзистора при отсутствии входного сигнала. Режим покоя обеспечивается током базы покоя IБ = Ек/RБ. С помощью резистора Rк создается выходное напряжение. Rк выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

Ек = Uкэ + IкRк,

сумма падения напряжения на резисторе Rк и напряжения коллектор-эмиттер Uкэ транзистора всегда равна постоянной величине – ЭДС источника питания Ек.

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Ек в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.

5)Что такое полевой транзистор? Какие виды бывают?

Полевой транзистор (ПТ) – полупроводниковый прибор, в котором ре-

гулирование тока осуществляется изменением проводимости проводящего

канала с помощью поперечного электрического поля. В отличие от биполяр-

ного ток полевого транзистора обусловлен потоком основных носителей.

Электроды полевого транзистора называют истоком (И), стоком (С) и

затвором (З). Управляющее напряжение прикладывается между затвором и ис-

током. От напряжения между затвором и истоком зависит проводимость кана-

ла, следовательно, и величина тока. Таким образом, полевой транзистор можно

рассматривать как источник тока, управляемый напряжением затвор-исток. Ес-

ли амплитуда изменения управляющего сигнала достаточно велика, сопротив-

ление канала может изменяться в очень больших пределах. В этом случае поле-

вой транзистор можно использовать в качестве электронного ключа.

По конструкции полевые транзисторы можно разбить на две группы:

С управляющим p–n-переходом;

С металлическим затвором, изолированным от канала диэлектриком.

Транзисторы второго вида называют МДП-транзисторами (металл –

диэлектрик – полупроводник). В большинстве случаев диэлектриком является

двуокись кремния SiO2, поэтому обычно используется название МОП-

транзисторы (металл – окисел – полупроводник). В современных МОП-

транзисторах для изготовления затвора часто используется поликристаллический

кремний. Однако название МОП-транзистор используют и для таких приборов.

Проводимость канала полевого транзистора может быть электронной

или дырочной. Если канал имеет электронную проводимость, то транзистор

называют n-канальным. Транзисторы с каналами, имеющими дырочную про-

водимость, называют p-канальными. В МОП- транзисторах канал может быть

обеднён носителями или обогащён ими. Таким образом, понятие «полевой

транзистор» объединяет шесть различных видов полупроводниковых прибо-

МОП-транзисторы находят широкое применение в современной электро-

нике. В ряде областей, в том числе в цифровой электронике, они почти полно-

стью вытеснили биполярные транзисторы. Это объясняется следующими при-229

чинами. Во-первых, полевые транзисторы имеют высокое входное сопротивле-

ние и обеспечивают малое потребление энергии. Во-вторых, МОП-транзисторы

занимают на кристалле интегральной схемы значительно меньшую площадь,

чем биполярные. Поэтому плотность компоновки элементов в МОП-

интегральных схемах значительно выше. В-третьих, технологии производства

интегральных схем на МОП-транзисторах требуют меньшего числа операций,

чем технологии изготовления ИС на биполярных транзисторах.

6)Что такое стабилитрон? Объясните принцип его работы. Нарисуйте его вольт-амперные характеристики.

Стабилитронами называют полупроводниковые диоды, использующие особенность обратной ветви вольтамперной характеристики на участке пробоя изменяться в широком диапазоне изменения токов при сравнительно небольшом отклонении напряжения. Это свойство широко используется при создании специальных устройств – стабилизаторов напряжения.

Напряжение пробоя стабилитрона зависит от ширины р-n -перехода, которая определяется удельным сопротивлением материала полупроводника. Поэтому существует определенная зависимость пробивного напряжения (т. е. напряжения стабилизации) от концентрации примесей.

Низковольтные стабилитроны выполняют на основе сильно легированного кремния. Ширина р-n -перехода в этом случае получается очень маленькой, а напряженность электрического поля потенциального барьера – очень большой, что создает условия для возникновения туннельного пробоя. При большой ширине р-n -перехода пробой носит лавинный характер.

Вольт-амперная характеристика стабилитрона представлена на рис. 6.1 Рабочий ток стабилитрона (его обратный ток) не должен превышать максимально допустимого значения во избежание перегрева полупроводниковой структуры и выхода его из строя.

Рис. 6.1. Конструкция корпуса (а), вольт-амперная характеристика и условное графическое обозначение стабилитрона

Существенной особенностью стабилитрона является зависимость его напряжения стабилизации от температуры. В сильно легированных полупроводниках вероятность туннельного пробоя с увеличением температуры возрастает. Поэтому напряжение стабилизации у таких стабилитронов при нагревании уменьшается, т. е. они имеют отрицательный температурный коэффициент напряжения стабилизации (ТКН)

.

В слабо легированных полупроводниках при увеличении температуры уменьшается длина свободного пробега носителей, что приводит к увеличению порогового значения напряжения, при котором начинается лавинный пробой. Такие стабилитроны имеют положительный ТКН. (рис. 6.2).

Рис. 6.2. Температурная зависимость вольт-амперной характеристика стабилитрона

Для устранения этого недостатка и создания термокомпенсированных стабилитронов последовательно в цепь стабилитрона включают обычные диоды в прямом направлении. Как известно, у обычных диодов в прямом направлении падение напряжения на р-n -переходе при нагревании уменьшается. И если последовательно со стабилитроном (рис. 6.3) включить диодов в прямом направлении, где , (– изменение прямого падения напряжения на диоде при нагревании отдо), то можно почти полностью компенсировать температурную погрешность стабилитрона.

Рис. 6.3. Термокомпенсация стабилитрона

Основные параметры стабилитронов:

Предельные параметры стабилитронов:

Усилитель с общим эмиттером раньше являлся базовой схемой всех усилительных устройств.

В прошлой статье мы с вами говорили о самой простой схеме смещения транзистора. Эта схема (рисунок ниже) зависит от , а он в свою очередь зависит от температуры, что не есть хорошо. В результате на выходе схемы могут появиться искажения усиливаемого сигнала.

Чтобы такого не произошло, в эту схему добавляют еще парочку и в результате получается схема с 4-мя резисторами:


Резистор между базой и эмиттером назовем R бэ , а резистор, соединенный с эмиттером, назовем R э . Теперь, конечно же, главный вопрос: «Зачем они нужны в схеме?»

Начнем, пожалуй, с R э .

Как вы помните, в предыдущей схеме его не было. Итак, давайте предположим, что по цепи +Uпит—->R к ——> коллектор—> эмиттер—>R э —-> земля бежит электрический ток, с силой в несколько миллиампер (если не учитывать крохотный ток базы, так как I э = I к + I б ) Грубо говоря, у нас получается вот такая цепь:

Следовательно, на каждом резисторе у нас будет падать какое-то напряжение. Его величина будет зависеть от силы тока в цепи, а также от номинала самого резистора.

Чуток упростим схемку:

R кэ — это сопротивление перехода коллектор-эмиттер. Как вы знаете, оно в основном зависит от базового тока.

В результате, у нас получается простой делитель напряжения , где


Мы видим, что на эмиттере уже НЕ БУДЕТ напряжения в ноль Вольт, как это было в прошлой схеме. Напряжение на эмиттере уже будет равняться падению напряжения на резисторе R э .

А чему равняется падение напряжения на R э ? Вспоминаем закон Ома и высчитываем:

Как мы видим из формулы, напряжение на эмиттере будет равняться произведению силы тока в цепи на номинал сопротивления резистора R э . С этим вроде как разобрались. Для чего вся эта канитель, мы разберем чуть ниже.

Какую же функцию выполняют резисторы R б и R бэ ?


Именно эти два резистора представляют из себя опять же простой делитель напряжения . Они задают определенное напряжение на базу, которое будет меняться, если только поменяется +Uпит , что бывает крайне редко. В остальных случаях напряжение на базе будет стоять мертво.

Вернемся к R э.

Оказывается, он выполняет самую главную роль в этой схеме.

Предположим, у нас из-за нагрева транзистора начинает увеличиваться ток в этой цепи.

Теперь разберем поэтапно, что происходит после этого.

а) если увеличивается ток в этой цепи, то следовательно увеличивается и падение напряжения на резисторе R э .

б) падение напряжения на резисторе R э — это и есть напряжение на эмиттере U э . Следовательно, из-за увеличения силы тока в цепи U э стало чуток больше.

в) на базе у нас фиксированное напряжение U б , образованное делителем из резисторов R б и R бэ

г) напряжение между базой эмиттером высчитывается по формуле U бэ = U б — U э . Следовательно, U бэ станет меньше, так как U э увеличилось из-за увеличенной силы тока, которая увеличилась из-за нагрева транзистора.

д) Раз U бэ уменьшилось, значит и сила тока I б , проходящая через базу-эмиттер тоже уменьшилась.

е) Выводим из формулы ниже I к

I к =β х I б

Следовательно, при уменьшении базового тока, уменьшается и коллекторный ток;-) Режим работы схемы приходит в изначальное состояние. В результате схема у нас получилась с отрицательной обратной связью, в роли которой выступил резистор R э . Забегая вперед, скажу, что О трицательная О братная С вязь (ООС) стабилизирует схему, а положительная наоборот приводит к полному хаосу, но тоже иногда используется в электронике.

Расчет усилительного каскада


1) Первым делом находим из даташита максимально допустимую рассеиваемую мощность, которую транзистор может рассеять на себе в окружающую среду. Для моего транзистора это значение равняется 150 миллиВатт. Мы не будем выжимать из нашего транзистора все соки, поэтому уменьшим нашу рассеиваемую мощность, умножив на коэффициент 0,8:

P рас = 150х0,8=120 милливатт.

2) Определим напряжение на U кэ . Оно должно равняться половине напряжения Uпит.

U кэ = Uпит / 2 = 12/2=6 Вольт.

3) Определяем ток коллектора:

I к = P рас / U кэ = 120×10 -3 / 6 = 20 миллиампер.

4) Так как половина напряжения упала на коллекторе-эмиттере U кэ , то еще половина должна упасть на резисторах. В нашем случае 6 Вольт падают на резисторах R к и R э . То есть получаем:

R к + R э = (Uпит / 2) / I к = 6 / 20х10 -3 = 300 Ом.

R к + R э = 300 , а R к =10R э, так как K U = R к / R э , а мы взяли K U =10 ,

то составляем небольшое уравнение:

10R э + R э = 300

11R э = 300

R э = 300 / 11 = 27 Ом

R к = 27х10=270 Ом

5) Определим ток базы I базы из формулы:

Коэффициент бета мы замеряли в прошлом примере. Он у нас получился около 140.


Значит,

I б = I к / β = 20х10 -3 /140 = 0,14 миллиампер

6) Ток делителя напряжения I дел , образованный резисторами R б и R бэ , в основном выбирают так, чтобы он был в 10 раз больше, чем базовый ток I б :

I дел = 10I б = 10х0,14=1,4 миллиампер.

7) Находим напряжение на эмиттере по формуле:

U э = I к R э = 20х10 -3 х 27 = 0,54 Вольта

8) Определяем напряжение на базе:

U б = U бэ + U э

Давайте возьмем среднее значение падения напряжения на базе-эмиттер U бэ = 0,66 Вольт . Как вы помните — это падение напряжения на P-N переходе.

Следовательно, U б =0,66 + 0,54 = 1,2 Вольта . Именно такое напряжение будет теперь находиться у нас на базе.

9) Ну а теперь, зная напряжение на базе (оно равняется 1,2 Вольта), мы можем рассчитать номинал самих резисторов.

Для удобства расчетов прилагаю кусочек схемы каскада:

Итак, отсюда нам надо найти номиналы резисторов. Из формулы закона Ома высчитываем значение каждого резистора.

Для удобства пусть у нас падение напряжения на R б называется U 1 , а падение напряжения на R бэ будет U 2 .

Используя закон Ома, находим значение сопротивлений каждого резистора.

R б = U 1 / I дел = 10,8 / 1,4х10 -3 = 7,7 КилоОм . Берем из ближайшего ряда 8,2 КилоОма

R бэ = U 2 / I дел = 1,2 / 1,4х10 -3 = 860 Ом . Берем из ряда 820 Ом.

В результате у нас будут вот такие номиналы на схеме:


Проверка работы схемы в железе

Одной теорией и расчетами сыт не будешь, поэтому собираем схему в реале и проверяем ее в деле. У меня получилась вот такая схемка:


Итак, беру свой и цепляюсь щупами на вход и выход схемы. Красная осциллограмма — это входной сигнал, желтая осциллограмма — это выходной усиленный сигнал.

Первым делом подаю синусоидальный сигнал с помощью своего китайского генератора частоты :


Как вы видите, сигнал усилился почти в 10 раз, как и предполагалось, так как наш коэффициент усиления был равен 10. Как я уже говорил, усиленный сигнал по схеме с ОЭ находится в противофазе, то есть сдвинут на 180 градусов.

Давайте подадим еще треугольный сигнал:


Вроде бы гуд. Если присмотреться, то есть небольшие искажения. Нелинейность входной характеристики транзистора дает о себе знать.

Если вспомнить осциллограмму схемы с двумя резисторами

то можно увидеть существенную разницу в усилении треугольного сигнала


Заключение

Схема с ОЭ во времена пика популярности биполярных транзисторов использовалась как самая ходовая. И этому есть свое объяснение:

Во-первых , эта схема усиливает как по току, так и по напряжению, а следовательно и по мощности, так как P=UI .

Во-вторых , ее входное сопротивление намного больше, чем выходное, что делает эту схему отличной малопотребляемой нагрузкой и отличным источником сигнала для следующих за ней нагрузок.

Ну а теперь немного минусов:

1) схема потребляет небольшой ток, пока находится в режиме ожидания. Это значит, питать ее долго от батареек не имеет смысла.

2) она уже морально устарела в наш век микроэлектроники. Для того, чтобы собрать усилитель, проще купить готовую микросхему и сделать на ее базе

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история

Транзистор - электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» - дважды). А в полевом (он же униполярный) - или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые - в цифровой.

И, напоследок: основная область применения любых транзисторов - усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики


Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.


Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора ), а между эмиттером и базой - слабый управляющий ток (ток базы ). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй - с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но бо льшая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны - неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу . Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем - ток коллектора, а управляющий ток базы - то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) - соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21 . Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току . Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора . Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора - коэффициент усиления по напряжению . Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая - очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику , которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной .

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора

Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
  1. Инверсный активный режим . Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения . Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки . Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером

Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности - до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор - обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой

Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное - не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным - потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке - VT1), который управляет энергией питания более мощного собрата (на рисунке - VT2).

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления - то сигнал произвольной формы, зависящий от управляющего воздействия.

Маркировка

Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл.xls (35 кб) .

Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173

Теги: Добавить метки



Статьи по теме