Проектирование кубов данных. OLAP-КУБ (динамическая управленческая отчетность)

Возможно, для кого-то использование OLAP-технологии (On-line Analytic Processing) при построении отчетности покажется какой-то экзотикой, поэтому применение OLAP-КУБа для них вовсе не является одним из важнейших требований при автоматизации бюджетирования и управленческого учета .

На самом деле очень удобно пользоваться многомерным КУБом при работе с управленческой отчетностью. При разработке форматов бюджетов можно столкнуться с проблемой многовариантности форм (подробнее об этом можно прочитать в Книге 8 "Технология постановки бюджетирования в компании" и в книге "Постановка и автоматизация управленческого учета").

Это связано с тем, что для эффективного управления компанией требуется все более детализированная управленческая отчетность. То есть в системе используется все больше различных аналитических срезов (в информационных системах аналитики определяются набором справочников).

Естественно, это приводит к тому, что руководители хотят получать отчетность во всех интересующих их аналитических срезах. А это значит, что отчеты нужно как-то заставить «дышать». Иными словами можно сказать, что в данном случае речь идет о том, что по смыслу один и тот же отчет должен предоставлять информацию в различных аналитических разрезах. Поэтому статичные отчеты уже не устраивают многих современных руководителей. Им нужна динамика, которую может дать многомерный КУБ.

Таким образом, OLAP-технология уже сейчас стала обязательным элементом в современных и перспективных информационных системах. Поэтому при выборе программного продукта нужно обращать внимание на то, используется ли в нем OLAP-технология.

Причем нужно уметь отличать настоящие КУБы от имитации. Одной из таких имитаций являются сводные таблицы в MS Excel. Да, этот инструмент похож на КУБ, но на самом деле таковым не является, поскольку это статические, а не динамические таблицы. Кроме того, в них гораздо хуже реализована возможность построения отчетов, использующих элементы из иерархических справочников.

Для подтверждения актуальности использования КУБа при построении управленческой отчетности можно привести простейший пример с бюджетом продаж. В рассматриваемом примере для компании актуальными являются следующие аналитические срезы: продукты, филиалы и каналы сбыта. Если для компании важны эти три аналитики, то бюджет (или отчет) продаж можно выводить в нескольких вариантах.

Следует отметить, что если создавать строки бюджетов на основе трех аналитических срезов (как в рассматриваемом примере), это позволяет создавать достаточно сложные бюджетные модели и составлять детализированные отчеты с использованием КУБа.

Например, бюджет продаж можно составлять с использованием только одной аналитики (справочника). Пример бюджета продаж, построенного на основе одной аналитики "Продукты" представлен на рисунке 1 .

Рис. 1. Пример бюджета продаж, построенного на основе одной аналитики "Продукты" в OLAP-КУБе

Этот же бюджет продаж можно составлять с использованием двух аналитик (справочников). Пример бюджета продаж, построенного на основе двух аналитик "Продукты" и "Филиалы" представлен на рисунке 2 .

Рис. 2. Пример бюджета продаж, построенного на основе двух аналитик "Продукты" и "Филиалы" в OLAP-КУБе программного комплекса "ИНТЕГРАЛ"

.

Если есть необходимость строить более детальные отчеты, то можно тот же бюджет продаж составлять с использованием трех аналитик (справочников). Пример бюджета продаж, построенного на основе трех аналитик "Продукты", "Филиалы" и "Каналы сбыта" представлен на рисунке 3 .

Рис. 3. Пример бюджета продаж, построенного на основе трех аналитик "Продукты", "Филиалы" и "Каналы сбыта" в OLAP-КУБе программного комплекса "ИНТЕГРАЛ"

Нужно напомнить о том, что КУБ, используемый для формирования отчетов, позволяет выводить данные в различной последовательности. На рисунке 3 бюджет продаж сначала "разворачивается" по продуктам, затем по филиалам, а потом по каналам сбыта.

Те же самые данные можно представить в другой последовательности. На рисунке 4 тот же самый бюджет продаж "разворачивается" сначала по продуктам, затем по каналам сбыта, а потом по филиалам.

Рис. 4. Пример бюджета продаж, построенного на основе трех аналитик "Продукты", "Каналы сбыта" и "Филиалы" в OLAP-КУБе программного комплекса "ИНТЕГРАЛ"

На рисунке 5 тот же самый бюджет продаж "разворачивается" сначала по филиалам, затем по продуктам, а потом по каналам сбыта.

Рис. 5. Пример бюджета продаж, построенного на основе трех аналитик "Филиалы", "Продукты" и "Каналы сбыта" в OLAP-КУБепрограммного комплекса "ИНТЕГРАЛ"

На самом деле это не все возможные варианты вывода бюджета продаж.

Кроме того, нужно обратить внимание на то, что КУБ позволяет работать с иерархической структурой справочников. В представленных примерах иерархическими справочниками являются "Продукты" и "Каналы сбыта".

С точки зрения пользователя он в данном примере получает несколько управленческих отчетов (см. Рис. 1-5 ), а с точки зрения настроек в программном продукте – это один отчет. Просто с помощью КУБа его можно просматривать несколькими способами.

Естественно, что на практике возможно очень большое количество вариантов вывода различных управленческих отчетов, если их статьи строятся на одной или нескольких аналитиках. А уж сам набор аналитик зависит от потребности пользователей в детализации. Правда, при этом не следует забывать, что, с одной стороны, чем больше аналитик, тем более детализированные отчеты можно строить. Но, с другой стороны, значит, и финансовая модель бюджетирования будет более сложной. В любом случае при наличии КУБа компания будет иметь возможность просмотра необходимой отчетности в различных вариантах, в соответствии с интересующими аналитическими разрезами.

Необходимо упомянуть еще о нескольких возможностях OLAP-КУБа.

В многомерном иерархическом OLAP-КУБе есть несколько измерений: тип строки, дата, строки, справочник 1, справочник 2 и справочник 3 (см. Рис. 6 ). Естественно, в отчет выводится столько кнопок со справочниками, сколько есть в строке бюджета, содержащей максимальное количество справочников. Если ни в одной строке бюджета нет ни одного справочника, то в отчете не будет ни одной кнопки со справочниками.

Изначально OLAP-КУБ строится по всем измерениям. По умолчанию при первоначальном построении отчета измерения расположены именно в тех областях, как показано на рисунке 6 . То есть такое измерение, как «Дата», располагается в области вертикальных измерений (измерения в области столбцов), измерения «Строки», «Справочник 1», «Справочник 2» и «Справочник 3» – в области горизонтальных измерений (измерения в области строк), а измерение «Тип строки» – в области «нераскрываемых» измерений (измерения в страничной области). Если измерение находится в последней области, то данные в отчете не будут «раскрываться» по этому измерению.

Каждое из этих измерений можно поместить в любую из трех областей. После переноса измерений отчет мгновенно перестраивается в соответствии с новой конфигурацией измерений. Например, можно поменять местами дату и строки со справочниками. Или можно в вертикальную область измерений перенести один из справочников (см. Рис. 7 ). Иными словами, отчет в OLAP-КУБе можно «крутить» и выбирать тот вариант вывода отчета, который является наиболее удобным для пользователя.

Рис. 7. Пример перестройки отчета после изменения конфигурации измерений программного комплекса "ИНТЕГРАЛ"

Конфигурацию измерений можно менять либо в основной форме КУБа, либо в редакторе карты изменений (см. Рис. 8 ). В этом редакторе также можно мышкой перетаскивать измерения из одной области в другую. Помимо этого, можно менять местами измерения в одной области.

Кроме того, в этой же форме можно настраивать некоторые параметры измерений. По каждому измерению можно настраивать расположение итогов, порядок сортировки элементов и названия элементов (см. Рис. 8 ). Также можно задавать, какое название элементов выводить в отчет: сокращенное (Name) или полное (FullName).

Рис. 8. Редактор карты измерений программного комплекса "ИНТЕГРАЛ"

Редактировать параметры измерений можно непосредственно в каждом из них (см. Рис. 9 ). Для этого нужно нажать на пиктограмму, расположенную на кнопке рядом с названием измерения.

Рис. 9. Пример редактирования справочника 1 Продукты и услуги в

С помощью этого редактора можно выбирать элементы, которые нужно показывать в отчете. По умолчанию в отчет выводятся все элементы, но при необходимости часть элементов или папок можно не показывать. Например, если нужно выводить в отчет только одну продуктовую группу, то у всех остальных необходимо убрать галочки в редакторе измерений. После чего в отчете будет только одна продуктовая группа (см. Рис. 10 ).

Также в этом редакторе можно сортировать элементы. Кроме того, элементы можно перегруппировывать различными способами. После такой перегруппировки отчет мгновенно перестраивается.

Рис. 10. Пример вывода в отчете только одной продуктовой группы (папки) в программном комплексе "ИНТЕГРАЛ"

В редакторе измерения можно оперативно создавать свои группы, перетаскивать туда элементы из справочников и т.д. По умолчанию автоматически создается только группа «Прочие», но можно создавать и другие группы. Таким образом, с помощью редактора измерений можно настраивать, какие элементы справочников и в каком порядке нужно выводить в отчет.


Следует отметить, что все такие перегруппировки не записываются. То есть после закрытия отчета или после его перерасчета в отчет будут выводиться все справочники в соответствии с настроенной методикой.

На самом деле все такие изменения можно было сделать изначально при настройке строк.

Например, с помощью ограничений также можно задавать, какие элементы или группы справочников нужно выводить в отчет, а какие – нет.

Примечание : более подробно тема данной статьи рассматривается на семинарах-практикумах "Бюджетное управление предприятием" и "Постановка и автоматизация управленческого учета" , которые проводит автор данной статьи - Александр Карпов .

Если пользователю практически регулярно нужно выводить в отчет только определенные элементы или папки справочников, то подобные настройки лучше заранее сделать при создании строк отчетов. Если же для пользователя важны различные комбинации элементов справочников в отчетах, тогда при настройке методики никакие ограничения ставить не нужно. Все такие ограничения можно будет оперативно настраивать с помощью редактора измерения.

В рамках данной работы будут рассмотрены следующие вопросы:

  • Что представляют собой OLAP-кубы?
  • Что такое меры, измерения, иерархии?
  • Какие виды операций можно выполнять над OLAP-кубами?
Понятие OLAP-куба

Главный постулат OLAP - многомерность в представлении данных. В терминологии OLAP для описания многомерного дискретного пространства данных используется понятие куба, или гиперкуба.

Куб представляет собой многомерную структуру данных, из которой пользователь-аналитик может запрашивать информацию. Кубы создаются из фактов и измерений.

Факты - это данные об объектах и событиях в компании, которые будут подлежать анализу. Факты одного типа образуют меры (measures). Мера есть тип значения в ячейке куба.

Измерения - это элементы данных, по которым производится анализ фактов. Коллекция таких элементов формирует атрибут измерения (например, дни недели могут образовать атрибут измерения "время"). В задачах бизнес-анализа коммерческих предприятий в качестве измерений часто выступают такие категории, как "время", "продажи", "товары", "клиенты", "сотрудники", "географическое местоположение". Измерения чаще всего являются иерархическими структурами, представляющими собой логические категории, по которым пользователь может анализировать фактические данные. Каждая иерархия может иметь один или несколько уровней. Так иерархия измерения "географическое местоположение" может включать уровни: "страна - область - город". В иерархии времени можно выделить, например, такую последовательность уровней: Измерение может иметь несколько иерархий (при этом каждая иерархия одного измерения должна иметь один и тот же ключевой атрибут таблицы измерений).

Куб может содержать фактические данные из одной или нескольких таблиц фактов и чаще всего содержит несколько измерений. Любой конкретный куб обычно имеет конкретный направленный предмет анализа.

На рисунке 1 показан пример куба, предназначенного для анализа продаж продуктов нефтепереработки некоторой компанией по регионам. Данный куб имеет три измерения (время, товар и регион) и одну меру (объем продаж, выраженный в денежном эквиваленте). Значения мер хранятся в соответствующих ячейках (cell) куба. Каждая ячейка уникально идентифицируется набором членов каждого из измерений, называемого кортежем. Например, ячейка, расположенная в нижнем левом углу куба (содержит значение $98399), задается кортежем [Июль 2005, Дальний Восток, Дизель]. Здесь значение $98399 показывают объем продаж (в денежном выражении) дизеля на Дальнем Востоке за июль 2005 года.

Стоит обратите также внимание на то, что некоторые ячейки не содержат никаких значений: эти ячейки пусты, потому что в таблице фактов не содержится данных для них.

Рис. 1. Куб с информацией о продажах нефтепродуктов в различных регионах

Конечной целью создания подобных кубов является минимизация времени обработки запросов, извлекающих требуемую информацию из фактических данных. Для реализации этой задачи кубы обычно содержат предварительно вычисленные итоговые данные, называемые агрегациями (aggregations). Т.е. куб охватывает пространство данных большее, чем фактическое - в нем существуют логические, вычисляемые точки. Вычислять значения точек в логическом пространстве на основе фактических значений позволяют функции агрегирования. Наиболее простыми функциями агрегирования являются SUM, MAX, MIN, COUNT. Так, например, используя функцию MAX, для приведенного в примере куба можно выявить, когда произошел пик продаж дизеля на Дальнем Востоке и т.д.

Еще одной специфической чертой многомерных кубов является сложность определения точки начала координат. Например, как задать точку 0 для измерения "Товар" или "Регионы"? Решением этой проблемы является внедрение специального атрибута, объединяющего все элементы измерения. Этот атрибут (создается автоматически) содержит всего один элемент - All ("Все"). Для простых функций агрегирования, например, суммы, элемент All эквивалентен сумме значений всех элементов фактического пространства данного измерения.

Важной концепцией многомерной модели данных является подпространство, или подкуб (sub cube). Подкуб представляет собой часть полного пространства куба в виде некоторой многомерной фигуры внутри куба. Так как многомерное пространство куба дискретно и ограничено, подкуб также дискретен и ограничен.

Операции над OLAP-кубами

Над OLAP-кубом могут выполняться следующие операции:

  • срез;
  • вращение;
  • консолидация;
  • детализация.
Срез (рисунок 2) является частным случаем подкуба. Это процедура формирования подмножество многомерного массива данных, соответствующее единственному значению одного или нескольких элементов измерений, не входящих в это подмножество. Например, чтобы узнать, как продвигались продажи нефтепродуктов во времени только в определенном регионе, а именно на Урале, то необходимо зафиксировать измерение "Товары" на элементе "Урал" и извлечь из куба соответствующее подмножество (подкуб).
  • Рис. 2. Срез OLAP-куба

    Вращение (рисунок 3) - операция изменения расположения измерений, представленных в отчете или на отображаемой странице. Например, операция вращения может заключаться в перестановке местами строк и столбцов таблицы. Кроме того, вращением куба данных является перемещение внетабличных измерений на место измерений, представленных на отображаемой странице, и наоборот.

    В предыдущей статье данного цикла (см. № 2’2005) мы рассказали об основных новшествах аналитических служб SQL Server 2005. Сегодня мы подробнее рассмотрим средства создания OLAP-решений, входящие в этот продукт.

    Коротко об основах OLAP

    режде чем начать разговор о средствах создания OLAP-решений, напомним, что OLAP (On-Line Analytical Processing) — это технология комплексного многомерного анализа данных, концепция которой была описана в 1993 году Э.Ф.Коддом, знаменитым автором реляционной модели данных. В настоящее время поддержка OLAP реализована во многих СУБД и иных инструментах.

    OLAP-кубы

    Что представляют собой OLAP-данные? В качестве ответа на этот вопрос рассмотрим простейший пример. Предположим, в корпоративной базе данных некоего предприятия имеется набор таблиц, содержащих сведения о продажах товаров или услуг, и на их основе создано представление Invoices с полями Country (страна), City (город), CustomerName (название компании-клиента), Salesperson (менеджер по продажам), OrderDate (дата размещения заказа), CategoryName (категория товара), ProductName (наименование товара), ShipperName (компания-перевозчик), ExtendedPrice (оплата за товар), при этом последнее из перечисленных полей, собственно, и является объектом анализа.

    Выбор данных из такого представления можно осуществить с помощью следующего запроса:

    SELECT Country, City, CustomerName, Salesperson,

    OrderDate, CategoryName, ProductName, ShipperName, ExtendedPrice

    FROM Invoices

    Предположим, нас интересует, какова суммарная стоимость заказов, сделанных клиентами из разных стран. Для получения ответа на этот вопрос необходимо сделать следующий запрос:

    SELECT Country, SUM (ExtendedPrice) FROM Invoices

    GROUP BY Country

    Результатом этого запроса будет одномерный набор агрегатных данных (в данном случае — сумм):

    Country SUM (ExtendedPrice)
    Argentina 7327.3
    Austria 110788.4
    Belgium 28491.65
    Brazil 97407.74
    Canada 46190.1
    Denmark 28392.32
    Finland 15296.35
    France 69185.48
    209373.6
    ...

    Если же мы хотим узнать, какова суммарная стоимость заказов, сделанных клиентами из разных стран и доставленных различными службами доставки, мы должны выполнить запрос, содержащий два параметра в предложении GROUP BY:

    SELECT Country, ShipperName, SUM (ExtendedPrice) FROM Invoices

    GROUP BY COUNTRY, ShipperName

    Исходя из результатов этого запроса можно создать таблицу следующего вида:

    Такой набор данных называется сводной таблицей (pivot table).

    SELECT Country, ShipperName, SalesPerson SUM (ExtendedPrice) FROM Invoices

    GROUP BY COUNTRY, ShipperName, Year

    На основании результатов этого запроса можно построить трехмерный куб (рис. 1).

    Добавляя дополнительные параметры для анализа, можно создать куб с теоретически любым числом измерений, при этом наряду с суммами в ячейках OLAP-куба могут содержаться результаты вычисления иных агрегатных функций (например, средние, максимальные, минимальные значения, количество записей исходного представления, соответствующее данному набору параметров). Поля, на основании которых вычисляются результаты, называются мерами куба.

    Иерархии в измерениях

    Предположим, нас интересует не только суммарная стоимость заказов, сделанных клиентами в разных странах, но и суммарная стоимость заказов, сделанных клиентами в разных городах одной страны. В этом случае можно воспользоваться тем, что значения, наносимые на оси, имеют различные уровни детализации — это описывается в рамках концепции иерархии изменений. Скажем, на первом уровне иерархии располагаются страны, на втором — города. Отметим, что начиная с SQL Server 2000 аналитические службы поддерживают так называемые несбалансированные иерархии, содержащие, например, такие члены, «дети» которых содержатся не на соседних уровнях иерархии или отсутствуют для некоторых членов изменения. Типичный пример подобной иерархии — учет того факта, что в разных странах могут существовать, либо отсутствовать такие административно-территориальные единицы, как штат или область, размещающиеся в географической иерархии между странами и городами (рис. 2).

    Отметим, что в последнее время принято выделять типичные иерархии, например содержащие географические или временные данные, а также поддерживать существование нескольких иерархий в одном измерении (в частности, для календарного и финансового года).

    Создание OLAP-кубов в SQL Server 2005

    SQL Server 2005 кубы создаются с помощью SQL Server Business Intelligence Development Studio. Этот инструмент представляет собой специальную версию Visual Studio 2005, предназначенную для решения данного класса задач (а при наличии уже установленной среды разработки список шаблонов проектов пополняется проектами, предназначенными для создания решений на основе SQL Sever и его аналитических служб). В частности, для создания решений на основе аналитических служб предназначен шаблон Analysis Services Project (рис. 3).

    Для создания OLAP-куба в первую очередь следует решить, на основе каких данных его формировать. Наиболее часто OLAP-кубы строятся на основе реляционных хранилищ данных со схемами «звезда» или «снежинка» (о них мы рассказывали в предыдущей части статьи). В комплекте поставки SQL имеется пример такого хранилища — база данных AdventureWorksDW, для использования которой в качестве источника следует найти в Solution Explorer папку Data Sources, выбрать пункт контекстного меню New Data Source и последовательно ответить на вопросы соответствующего мастера (рис. 4).

    Затем рекомендуется создать Data Source View — представление, на основе которого будет создаваться куб. Для этого необходимо выбрать соответствующий пункт контекстного меню папки Data Source Views и последовательно ответить на вопросы мастера. Результатом указанных действий станет схема данных, с помощью которых будет построено представление источников данных, при этом в полученной схеме вместо исходных можно указать «дружественные» имена таблиц (рис. 5).

    Описанный таким образом куб можно перенести на сервер аналитических служб, выбрав из контекстного меню проекта опцию Deploy, и осуществить просмотр его данных (рис. 7).

    При создании кубов в настоящее время используются многие особенности новой версии SQL Server, такие, например, как представление источников данных. Описание исходных данных для построения куба, равно как и описание структуры куба, теперь производится с помощью знакомого многим разработчикам инструмента Visual Studio, что является немалым достоинством новой версии этого продукта — изучение разработчиками аналитических решений нового инструментария в этом случае сведено к минимуму.

    Отметим, что в созданном кубе можно менять состав мер, удалять и добавлять атрибуты измерений и добавлять вычисляемые атрибуты членов измерений на основе имеющихся атрибутов (рис. 8).

    Рис. 8. Добавление вычисляемого атрибута

    Кроме того, в кубах SQL Server 2005 можно осуществлять автоматическую группировку или сортировку членов измерения по значению атрибута, определять связи между атрибутами, реализовывать связи «многие ко многим», определять ключевые показатели бизнеса, а также решать многие другие задачи (подробности о том, как выполняются все эти действия, можно найти в разделе SQL Server Analysis Services Tutorial справочной системы данного продукта).

    В последующих частях данной публикации мы продолжим знакомство с аналитическими службами SQL Server 2005 и выясним, что нового появилось в области поддержки Data Mining.

    Аннотация: В настоящей лекции рассматриваются основы проектирования кубов данных для OLAP-хранилищ данных. На примере показана методика построения куба данных с помощью CASE-инструмента.

    Цель лекции

    Изучив материал настоящей лекции, вы будете знать:

    • что такое куб данных в OLAP-хранилище данных ;
    • как проектировать куб данных для OLAP-хранилищ данных ;
    • что такое измерение куба данных ;
    • как факт связан с кубом данных ;
    • что такое атрибуты измерения ;
    • что такое иерархия ;
    • что такое метрика куба данных ;

    и научитесь:

    • строить многомерные диаграммы ;
    • проектировать простые многомерные диаграммы .

    Введение

    Технология OLAP - это не отдельно взятый программный продукт , не язык программирования . Если постараться охватить OLAP во всех его проявлениях, то это совокупность концепций, принципов и требований, лежащих в основе программных продуктов, облегчающих аналитикам доступ к данным.

    Аналитики являются основными потребителями корпоративной информации. Задача аналитика состоит в том, чтобы находить закономерности в больших массивах данных. Поэтому аналитик не будет обращать внимания на отдельно взятый факт , что в определенный день покупателю Иванову была продана партия шариковых авторучек, - ему нужна информация о сотнях и тысячах подобных событий. Одиночные факты в ХД могут заинтересовать, к примеру, бухгалтера или начальника отдела продаж, в компетенции которого находится сопровождение определенного контракта. Аналитику одной записи недостаточно - ему, например, может понадобиться информация обо всех контрактах точки продажи за месяц, квартал или год. Аналитика может не интересовать ИНН покупателя или его телефон, - он работает с конкретными числовыми данными, что составляет сущность его профессиональной деятельности.

    Централизация и удобное структурирование - это далеко не все, что нужно аналитику. Ему требуется инструмент для просмотра, визуализации информации. Традиционные отчеты, даже построенные на основе единого ХД, лишены, однако, определенной гибкости. Их нельзя "покрутить", "развернуть" или "свернуть", чтобы получить необходимое представление данных. Чем больше "срезов" и "разрезов" данных аналитик может исследовать, тем больше у него идей, которые, в свою очередь , для проверки требуют все новых и новых "срезов". В качестве такого инструмента для исследования данных аналитиком выступает OLAP .

    Хотя OLAP и не представляет собой необходимый атрибут ХД, он все чаще и чаще применяется для анализа накопленных в этом ХД сведений.

    Оперативные данные собираются из различных источников, очищаются, интегрируются и складываются в ХД. При этом они уже доступны для анализа при помощи различных средств построения отчетов. Затем данные (полностью или частично) подготавливаются для OLAP -анализа. Они могут быть загружены в специальную БД OLAP или оставлены в реляционном ХД. Важнейшим элементом использования OLAP являются метаданные , т. е. информация о структуре, размещении и трансформации данных . Благодаря им обеспечивается эффективное взаимодействие различных компонентов хранилища.

    Таким образом, OLAP можно определить как совокупность средств многомерного анализа данных, накопленных в ХД . Теоретически средства OLAP можно применять и непосредственно к оперативным данным или их точным копиям. Однако при этом существует риск подвергнуть анализу данные, которые для этого анализа не пригодны.

    OLAP на клиенте и на сервере

    В основе OLAP лежит многомерный анализ данных . Он может быть произведен с помощью различных средств, которые условно можно разделить на клиентские и серверные OLAP -средства.

    Клиентские OLAP-средства представляют собой приложения, осуществляющие вычисление агрегатных данных (сумм, средних величин, максимальных или минимальных значений) и их отображение, при этом сами агрегатные данные содержатся в кэше внутри адресного пространства такого OLAP-средства .

    Если исходные данные содержатся в настольной СУБД , вычисление агрегатных данных производится самим OLAP -средством. Если же источник исходных данных - серверная СУБД , многие из клиентских OLAP -средств посылают на сервер SQL -запросы, содержащие оператор GROUP BY , и в результате получают агрегатные данные, вычисленные на сервере.

    Как правило, OLAP -функциональность реализована в средствах статистической обработки данных (из продуктов этого класса на российском рынке широко распространены продукты компаний Stat Soft и SPSS) и в некоторых электронных таблицах. В частности, неплохими средствами многомерного анализа обладает Microsoft Excel 2000. С помощью этого продукта можно создать и сохранить в виде файла небольшой локальный многомерный OLAP -куб и отобразить его двух- или трехмерные сечения.

    Многие средства разработки содержат библиотеки классов или компонентов, позволяющие создавать приложения, реализующие простейшую OLAP -функциональность (такие, например, как компоненты Decision Cube в Borland Delphi и Borland C++Builder). Помимо этого многие компании предлагают элементы управления ActiveX и другие библиотеки, реализующие подобную функциональность.

    Отметим, что клиентские OLAP -средства применяются, как правило, при малом числе измерений (обычно рекомендуется не более шести) и небольшом разнообразии значений этих параметров - ведь полученные агрегатные данные должны умещаться в адресном пространстве подобного средства, а их количество растет экспоненциально при увеличении числа измерений . Поэтому даже самые примитивные клиентские OLAP -средства, как правило, позволяют произвести предварительный подсчет объема требуемой оперативной памяти для создания в ней многомерного куба.

    Многие (но не все) клиентские OLAP -средства позволяют сохранить содержимое кэша с агрегатными данными в виде файла, что, в свою очередь , позволяет не производить их повторное вычисление . Отметим, что нередко такая возможность используется для отчуждения агрегатных данных с целью передачи их другим организациям или для публикации. Типичным примером таких отчуждаемых агрегатных данных является статистика заболеваемости в разных регионах и в различных возрастных группах, которая является открытой информацией, публикуемой министерствами здравоохранения различных стран и Всемирной организацией здравоохранения. При этом собственно исходные данные, представляющие собой сведения о конкретных случаях заболеваний, являются конфиденциальными данными медицинских учреждений и ни в коем случае не должны попадать в руки страховых компаний и тем более становиться достоянием гласности.

    Идея сохранения кэша с агрегатными данными в файле получила свое дальнейшее развитие в серверных OLAP-средствах, в которых сохранение и изменение агрегатных данных, а также поддержка содержащего их хранилища осуществляются отдельным приложением или процессом, называемым OLAP-сервером . Клиентские приложения могут запрашивать подобное многомерное хранилище и в ответ получать те или иные данные. Некоторые клиентские приложения могут также создавать такие хранилища или обновлять их в соответствии с изменившимися исходными данными.

    Преимущества применения серверных OLAP -средств по сравнению с клиентскими OLAP -средствами сходны с преимуществами применения серверных СУБД по сравнению с настольными: в случае применения серверных средств вычисление и хранение агрегатных данных происходит на сервере, а клиентское приложение получает лишь результаты запросов к ним, что позволяет в общем случае снизить сетевой трафик, время выполнения запросов и требования к ресурсам, потребляемым клиентским приложением. Отметим, что средства анализа и обработка данных масштаба предприятия, как правило, базируются именно на серверных OLAP -средствах, например, таких как Oracle Express Server , Microsoft SQL Server 2000 Analysis Services, Hyperion Essbase, продуктах компаний Crystal Decisions, Business Objects, Cognos, SAS Institute. Поскольку все ведущие производители серверных СУБД производят (либо лицензировали у других компаний) те или иные серверные OLAP -средства, выбор их достаточно широк, и почти во всех случаях можно приобрести OLAP - сервер того же производителя, что и у самого сервера баз данных.

    Отметим, что многие клиентские OLAP -средства (в частности, Microsoft Excel 2003, Seagate Analysis и др.) позволяют обращаться к серверным OLAP-хранилищам , выступая в этом случае в роли клиентских приложений, выполняющих подобные запросы. Помимо этого имеется немало продуктов, представляющих собой клиентские приложения к OLAP -средствам различных производителей.

    Технические аспекты многомерного хранения данных

    В многомерных ХД содержатся агрегатные данные различной степени подробности, например, объемы продаж по дням, месяцам, годам, по категориям товаров и т.п. Цель хранения агрегатных данных - сократить время выполнения запросов, поскольку в большинстве случаев для анализа и прогнозов интересны не детальные, а суммарные данные. Поэтому при создании многомерной базы данных всегда вычисляются и сохраняются некоторые агрегатные данные.

    Отметим, что сохранение всех агрегатных данных не всегда оправданно. Дело в том, что при добавлении новых измерений объем данных, составляющих куб, растет экспоненциально (иногда говорят о "взрывном росте" объема данных). Если говорить более точно, степень роста объема агрегатных данных зависит от количества измерений куба и членов измерений на различных уровнях иерархий этих измерений . Для решения проблемы "взрывного роста" применяются разнообразные схемы, позволяющие при вычислении далеко не всех возможных агрегатных данных достичь приемлемой скорости выполнения запросов.

    Как исходные, так и агрегатные данные могут храниться либо в реляционных, либо в многомерных структурах. Поэтому в настоящее время применяются три способа хранения данных.

    • MOLAP ( Multidimensional OLAP) - исходные и агрегатные данные хранятся в многомерной базе данных. Хранение данных в многомерных структурах позволяет манипулировать данными как многомерным массивом, благодаря чему скорость вычисления агрегатных значений одинакова для любого из измерений . Однако в этом случае многомерная база данных оказывается избыточной, так как многомерные данные полностью содержат исходные реляционные данные.
    • ROLAP (Relational OLAP) - исходные данные остаются в той же реляционной базе данных, где они изначально и находились. Агрегатные же данные помещают в специально созданные для их хранения служебные таблицы в той же базе данных.
    • HOLAP ( Hybrid OLAP) - исходные данные остаются в той же реляционной базе данных, где они изначально находились, а агрегатные данные хранятся в многомерной базе данных.

    Некоторые OLAP -средства поддерживают хранение данных только в реляционных структурах, некоторые - только в многомерных. Однако большинство современных серверных OLAP -средств поддерживают все три способа хранения данных. Выбор способа хранения зависит от объема и структуры исходных данных, требований к скорости выполнения запросов и частоты обновления OLAP -кубов.

    Отметим также, что подавляющее большинство современных OLAP -средств не хранит "пустых" значений (примером "пустого" значения может быть отсутствие продаж сезонного товара вне сезона).

    Основные понятия OLAP

    Тест FAMSI

    Технология комплексного многомерного анализа данных получила название OLAP (On-Line Analytical Processing). OLAP - это ключевой компонент организации ХД. Концепция OLAP была описана в 1993 году Эдгаром Коддом, известным исследователем баз данных и автором реляционной модели данных. В 1995 году на основе требований, изложенных Коддом, был сформулирован так называемый тест FASMI (Fast Analysis of Shared Multidimensional Information) - быстрый анализ разделяемой многомерной информации, включающий следующие требования к приложениям для многомерного анализа :

    • Fast (Быстрый) - предоставление пользователю результатов анализа за приемлемое время (обычно не более 5 с), пусть даже ценой менее детального анализа;
    • Analysis (Анализ) - возможность осуществления любого логического и статистического анализа, характерного для данного приложения, и его сохранения в доступном для конечного пользователя виде;
    • Shared (Разделяемый) - многопользовательский доступ к данным с поддержкой соответствующих механизмов блокировок и средств авторизованного доступа;
    • Multidimensional (Многомерный) - многомерное концептуальное представление данных, включая полную поддержку для иерархий и множественных иерархий (это ключевое требование OLAP);
    • Information (Информация) - приложение должно иметь возможность обращаться к любой нужной информации, независимо от ее объема и места хранения.

    Следует отметить, что OLAP-функциональность может быть реализована различными способами, начиная с простейших средств анализа данных в офисных приложениях и заканчивая распределенными аналитическими системами, основанными на серверных продуктах.

    Многомерное представление информации

    Кубы

    OLAP предоставляет удобные быстродействующие средства доступа, просмотра и анализа деловой информации. Пользователь получает естественную, интуитивно понятную модель данных, организуя их в виде многомерных кубов (Cubes) . Осями многомерной системы координат служат основные атрибуты анализируемого бизнес-процесса. Например, для продаж это могут быть товар, регион, тип покупателя. В качестве одного из измерений используется время. На пересечениях осей измерений (Dimensions) находятся данные, количественно характеризующие процесс - меры (Measures). Это могут быть объемы продаж в штуках или в денежном выражении, остатки на складе, издержки и т. п. Пользователь, анализирующий информацию, может "разрезать" куб по разным направлениям, получать сводные (например, по годам) или, наоборот, детальные (по неделям) сведения и осуществлять прочие манипуляции, которые ему придут в голову в процессе анализа.

    В качестве мер в трехмерном кубе, изображенном на рис. 26.1 , использованы суммы продаж, а в качестве измерений - время, товар и магазин. Измерения представлены на определенных уровнях группировки: товары группируются по категориям, магазины - по странам, а данные о времени совершения операций - по месяцам. Чуть позже мы рассмотрим уровни группировки (иерархии ) подробнее.


    Рис. 26.1.

    "Разрезание" куба

    Даже трехмерный куб сложно отобразить на экране компьютера так, чтобы были видны значения интересующих мер. Что уж говорить о кубах с количеством измерений , большим трех. Для визуализации данных, хранящихся в кубе, применяются, как правило, привычные двумерные, т. е. табличные представления, имеющие сложные иерархические заголовки строк и столбцов.

    Двумерное представление куба можно получить, "разрезав" его поперек вдоль одной или нескольких осей (измерений ): мы фиксируем значения всех измерений , кроме двух, - и получаем обычную двумерную таблицу. В горизонтальной оси таблицы (заголовки столбцов) представлено одно измерение , в вертикальной (заголовки строк) - другое, а в ячейках таблицы - значения мер. При этом набор мер фактически рассматривается как одно из измерений : мы либо выбираем для показа одну меру (и тогда можем разместить в заголовках строк и столбцов два измерения ), либо показываем несколько мер (и тогда одну из осей таблицы займут названия мер, а другую - значения единственного "неразрезанного" измерения ).

    (levels). Например, метки, представленная на поддерживаются далеко не всеми OLAP-средствами. Например, в Microsoft Analysis Services 2000 поддерживаются оба типа иерархии , а в Microsoft OLAP Services 7.0 - только сбалансированные. Различными в разных OLAP-средствах могут быть и число уровней иерархии , и максимально допустимое число членов одного уровня, и максимально возможное число самих измерений .

    Архитектура OLAP-приложений

    Все, что говорилось выше про OLAP, по сути, относилось к многомерному представлению данных. То, как данные хранятся, грубо говоря, не волнует ни конечного пользователя, ни разработчиков инструмента, которым клиент пользуется.

    Многомерность в OLAP-приложениях может быть разделена на три уровня.

    • Многомерное представление данных - средства конечного пользователя, обеспечивающие многомерную визуализацию и манипулирование данными; слой многомерного представления абстрагирован от физической структуры данных и воспринимает данные как многомерные.
    • Многомерная обработка - средство (язык) формулирования многомерных запросов (традиционный реляционный язык SQL здесь оказывается непригодным) и процессор, умеющий обработать и выполнить такой запрос.
    • Многомерное хранение - средства физической организации данных, обеспечивающие эффективное выполнение многомерных запросов.

    Первые два уровня в обязательном порядке присутствуют во всех OLAP-средствах. Третий уровень, хотя и является широко распространенным, не обязателен, так как данные для многомерного представления могут извлекаться и из обычных реляционных структур; процессор многомерных запросов в этом случае транслирует многомерные запросы в SQL-запросы, которые выполняются реляционной СУБД.

    Конкретные OLAP-продукты, как правило, представляют собой либо средство многомерного представления данных (OLAP-клиент - например, Pivot Tables в Excel 2000 фирмы Microsoft или ProClarity фирмы Knosys), либо многомерную серверную СУБД (OLAP-сервер - например, Oracle Express Server или Microsoft OLAP Services).

    Слой многомерной обработки обычно бывает встроен в OLAP-клиент и/или в OLAP-сервер, но может быть выделен в чистом виде, как, например, компонент Pivot Table Service фирмы Microsoft.

    Данных, как правило, разрежённый и долговременно хранимый. Может быть реализован на основе универсальных реляционных СУБД или специализированным программным обеспечением (см. также OLAP). В программных продуктах компании SAP используется термин «инфокуб».

    Индексам массива соответствуют измерения (dimensions) или оси куба, а значениям элементов массива - меры (measures) куба.

    w : (x ,y ,z ) → w xyz ,

    где x , y , z - измерения, w - мера.

    В отличие от обычного массива в языке программирования, доступ к элементам- OLAP-куба может осуществляться как по полному набору индексов-измерений, так и по их подмножеству, и тогда результатом будет не один элемент, а их множество.

    W : (x ,y ) → W = {w z1 , w z2 , …, w zn }

    Также известно описание OLAP-куба с использованием терминологии реляционной алгебры, как проекции отношений .

    См. также


    Wikimedia Foundation . 2010 .

    • Схема звезды
    • Наш дом - Россия (фракция)

    Смотреть что такое "OLAP-куб" в других словарях:

      OLAP куб - … Википедия

      OLAP - (англ. online analytical processing, аналитическая обработка в реальном времени) технология обработки данных, заключающаяся в подготовке суммарной (агрегированной) информации на основе больших массивов данных, структурированных по… … Википедия

      Куб (значения) - Куб многозначный термин: В математике В стереометрии куб шестигранный правильный многогранник В алгебре третья степень числа Фильм Серия фантастических фильмов: «Куб» «Куб 2: Гиперкуб» «Куб Ноль» Сленг и жаргон медицинское… … Википедия

      Куб - У этого термина существуют и другие значения, см. Куб (значения). Куб Тип Правильный многогранник Грань квадрат … Википедия

      Mondrian - OLAP Server Тип OLAP сервер Разработчик Pentaho Операционная система кроссплатформенное программное обеспечение Последняя версия 3.4.1 (2012 05 07) Лицензия свободное программное обеспечение … Википедия - Информационно аналитическая система автоматизированная система позволяющая экспертам быстро анализировать большие объемы данных, как правило является одним из элементов ситуационных центров. Так же, иногда в состав ИАС включают систему сбора… … Википедия



  • Статьи по теме