Принцип работы квантового компьютера. Как квантовые компьютеры изменят мир

Последние десятилетия компьютеры развивались очень быстро. Фактически на памяти одного поколения они прошли путь от громоздких ламповых, занимающих огромные помещения до миниатюрных планшетов. Стремительно увеличивалась память и скорость. Но наступил момент, когда появились задачи, неподвластные даже сверхмощным современным компьютерам.

Что такое квантовый компьютер?

Появление новых задач, неподвластных обычным компьютерам, заставило искать новые возможности. И, как альтернатива обычным компьютерам, появился квантовый. Квантовый компьютер - это вычислительная техника, в основу действия, которой положены элементы квантовой механики. Основные положения квантовой механики были сформулированы в начале прошлого века. Ее появление позволило решить многие задачи физики, которые не находили решения в классической физике.

Хотя теория квантов уже насчитывает второе столетие, она по-прежнему остается понятной только узкому кругу специалистов. Но есть и реальные результаты квантовой механики, к которым мы уже привыкли – лазерная техника, томография. А в конце прошлого века была разработана теория квантовых вычислений советским физиком Ю. Маниным. Через пять лет Дэвид Дойч обнародовал идею квантовой машины.

Существует ли квантовый компьютер?

Но воплощение идей оказалось не столь простым. Периодически появляются сообщения о то, что создан очередной квантовый компьютер. Над разработкой такой вычислительной техники работают гиганты в области информационных технологий:

  1. D-Wave – компания из Канады, которая первой начала выпуск действующих квантовых компьютеров. Тем не менее идут споры специалистов, насколько реально являются квантовыми эти компьютеры и какие преимущества они дают.
  2. IBM – создала квантовый компьютер, причем открыла к нему доступ для пользователей интернета для экспериментов с квантовыми алгоритмами. К 2025 году компания планирует создать модель, способную решать уже практические задачи.
  3. Google – анонсировала выпуск в этом году компьютера, способного доказать превосходство квантовых на обычными компьютерами.
  4. В мае 2017 г. Китайские ученые в Шанхае заявили, что создан самый мощный квантовый компьютер в мире, превосходящий аналоги по частоте обработки сигналов в 24 раза.
  5. В июле 2017 г. На Московской конференции по квантовым технологиям было заявлено о том, что был создан 51-кубитный квантовый компьютер.

Чем отличается квантовый компьютер от обычного?

Принципиальное отличие квантового компьютера в подходе к процессу вычисления.

  1. В обычном процессоре все вычисления строятся на основе битов, бывающих в двух состояний 1 либо 0. То есть, вся работа сводится к анализу огромного количества данных на предмет соответствия заданным условиям. В основу квантового компьютера положены кубиты (квантовые биты). Их особенностью является возможность быть в состоянии 1, 0, а также одновременно 1 и 0.
  2. Возможности квантового компьютера значительно возрастают, так как нет необходимости искать нужный ответ среди множества. В этом случае ответ выбирается из уже имеющихся вариантов с определенной долей вероятности соответствия.

Для чего нужен квантовый компьютер?

Принцип квантового компьютера, выстроенный на выборе решения с достаточной долей вероятности и способность находить такое решение в разы быстрее, чем современные компьютеры, определяет и цели его использования. Прежде всего, появление такого вида вычислительной техники беспокоит криптографов. Это связано со способностями квантового компьютера с легкостью вычислять пароли. Так, самый мощный квантовый компьютер, созданный российско-американскими учеными, способен получить ключи к существующим системам шифрования.

Есть и более полезные прикладные задачи для квантовых компьютеров, они связаны с поведением элементарных частиц, генетикой, здравоохранением, финансовыми рынками, защитой сетей от вирусов, искусственным интеллектом и множеством других, решить которые пока не могут обычные компьютеры.

Как устроен квантовый компьютер?

Устройство квантового компьютера базируется на применении кубитов. В качестве физического исполнения кубитов в настоящее время используются:

  • кольца из сверхпроводников с перемычками, с разнонаправленным током;
  • отдельные атомы, под воздействием лазерных лучей;
  • ионы;
  • фотоны;
  • разрабатываются варианты использования нанокристалов полупроводников.

Квантовый компьютер - принцип работы

Если с классическим компьютером в работе есть определенность, то на вопрос, как работает квантовый компьютер, ответить непросто. Описание работы квантового компьютера основывается на двух малопонятных для большинства словосочетаниях:

  • принцип суперпозиции – речь о кубитах, способных находиться одновременно в позиции 1 и 0. Это позволяет вести одновременно несколько вычислений, а не перебирать варианты, что дает большой выигрыш во времени;
  • квантовая запутанность – феномен, отмеченный еще А. Эйнштейном, заключающийся во взаимосвязи двух частиц. Говоря простыми словами, если одна из частиц имеет положительную спиральность, то вторая моментально принимает положительную. Такая взаимосвязь происходит вне зависимости от расстояния.

Кто изобрел квантовый компьютер?

Основа квантовой механики была изложена еще в самом начале прошлого века, как гипотеза. Развитие ее связано с такими гениальными физиками, как Макс Планк, А. Эйнштейн, Поль Дирак. В 1980 г. Ю.Антонов предложил идею о возможности квантовых вычислений. А уже через год Ричард Фейнеман в теории смоделировал первый квантовый компьютер.

Сейчас создание квантовых компьютеров в стадии разработок и даже трудно предположить, на что способен квантовый компьютер. Но абсолютно ясно, освоение этого направления принесет людям много новых открытий во всех областях науки, позволит заглянуть в микро и макромир, узнать больше о природе разума, генетики.

Квантовый компьютер - вычислительное устройство, которое использует явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных. Полноценный универсальный квантовый компьютер является пока гипотетическим устройством, сама возможность построения которого связана с серьёзным развитием квантовой теории в области многих частиц и сложных экспериментов; разработки в данной области связаны с новейшими открытиями и достижениями современной физики. На настоящий момент были практически реализованы лишь единичные экспериментальные системы, исполняющие фиксированный алгоритм небольшой сложности.

Ученые из Московского физико-технического института, вместе с коллегами из и Швейцарии провели эксперименты, в которых успешно заставили квантовый компьютер вернуться в состояние прошлого. Краткие выводы исследования, в которых описывается возможность проявления этого эффекта, сообщает пресс-релиз, опубликованный на сайте Phys.org. Подробности исследования международной команды физиков в журнале Scientific Reports.

Многие эксперты уверены, что с появлением полноценных квантовых компьютеров эра криптовалют и блокчейна подойдёт к своему логическому концу — системы криптографии, на которых основаны криптовалюты, будут моментально взломаны, а сами криптовалюты обесценятся, ведь первое, что сделает владелец квантового компьютера, — намайнит оставшиеся Биткоины, Эфиры и другие популярные «монеты». Именно так считает Алекс Бит, канадский физик, предсказавший безрадостное криптовалютное будущее в квантовой эре.

Наука не стоит на месте и, казалось бы, то, что считалось вчера мистикой сегодня неоспоримая реальность. Так и сейчас, мифы о параллельных мирах могут стать обычным фактом в дальнейшем. Считается, что к этому утверждению помогут прийти исследования в области создания квантового компьютера. Лидерство занимает Япония , более 70% всех исследований приходится на эту страну. Сущность этого открытия больше понятна тем, кто так или иначе связан с физикой. Но большинство из нас оканчивало среднюю школу, где в учебнике 11 класса раскрываются некоторые вопросы квантовой физики.

С чего все начиналось

Напомним, что начало положили два основных открытия, за которые их авторы удостоились Нобелевской премии. В 1918 году Макс Планк открыл квант, а Альберт Эйнштейн в 1921 году фотон. Идея создания квантового компьютера зародилась в 1980 году , когда было доказано об истинности квантовой теории. А идеи начали воплощаться в практику только в 1998 году . Массовые, и при этом достаточно результативные работы, проводятся только в последние 10 лет .

Основные принципы понятны, но с каждым шагом вперед возникает все больше проблем, разрешение которых занимает достаточно много времени, хотя этой проблемой занимается очень много лабораторий во всем мире. Требования к такому компьютеру очень большие, так как точность измерений должна быть очень высокой и нужно свести к минимуму количество внешних воздействий, каждое из которых будет искажать работу квантовой системы.

ЗАЧЕМ НУЖЕН КВАНТОВЫЙ КОМПЬЮТЕР?

На чем основана работа квантового компьютера

Все, в большей или меньшей степени, имеют понятие, как работает обычный компьютер. Смысл его заключается в использование двоичного кодирования, где наличие определенного значения напряжения принимается за 1, а отсутствие 0. , выраженное 0 или 1, считается битом. Работа же квантового компьютера связана с понятием спина. Для кого физика ограничивается школьными знаниями, могут утверждать о существовании трех элементарных частицах и о наличии у них простых характеристик, как масса и заряд.

Но ученые-физики постоянно пополняют класс элементарных частиц и их характеристик, одним из которых является спин. И определенное направление спина частицы принимается за 1, а обратное ему за 0. Это схоже с устройством транзистора. Основной элемент будет уже называться квантовым битом или кубитом. В качестве него могут выступать фотоны, атомы, ионы, ядра атомов.

Главным условием здесь является наличие двух квантовых состояний. Изменение состояния определенного бита в обычном компьютере не ведет к изменению других, а вот в квантовом компьютере изменение одной введет к изменению состояния других частиц. Этим изменением можно управлять, и представьте, что таких частиц сотни.

Представьте только, во сколько раз возрастет производительность такой машины. Но создание целостного новейшего компьютера – это только гипотеза, предстоит большая работа физиков в той области квантовой механики, которая называется многочастичной. Первый мини квантовый компьютер состоял из 16 кубитов . В последнее время выпущены компьютеры с использованием 512 кубитов, но и они уже используются для повышения быстроты выполнения сложнейших операций вычисления. Quipper – язык разработанный специально для таких машин.

Последовательность выполняемых операций

В создании компьютера нового поколения выделяют четыре направления, которые отличаются тем, что выступает в роли логических кубитов:

  1. направление спинов частиц, составляющих основу атома;
  2. наличие или отсутствие куперовской пары в установленном месте пространства;
  3. в каком состоянии находится внешний электрон;
  4. различные состояния фотона.

А теперь рассмотрим схему, по которой работает компьютер. Для начала берется какой-нибудь набор кубитов и записываются их начальные параметры. Выполняются преобразования с использованием логических операций, записывается полученное значение, являющееся результатом выдаваемым компьютером. В роли проводов выступают кубиты, а преобразования составляют логические блоки. Такой процессор был предложен Д. Дойчем , который в 1995 году смог создать цепочку способную выполнять любые вычисления на квантовом уровне. Но такая система дает небольшие погрешности, которые можно немного уменьшить, увеличив количество операций задействованных в алгоритме.

Как Работает Квантовый Компьютер?

Чего достигли

Пока разработаны только два типа квантовых компьютеров, но наука не стоит на месте. Работа обеих машин строится на квантовых явлениях:

  1. связано со сверхпроводимостью. При его нарушениях наблюдается квантование ;
  2. основано на таком свойстве как когерентность. Быстрота вычисления таких компьютеров увеличивается вдвое по сравнению с количеством кубитов.

Второй тип из рассмотренных считается приоритетным в области создания квантовых компьютеров.

Достижения различных стран.

Если вкратце, то достижения последних 10 лет значительные. Можно отметить созданный в Америке двухкубитный компьютер с программным обеспечением. Им же оказалось под силу выпуск двухкубитного компьютера с кристаллом алмаза. В роли кубитов применялось направление спина частиц азота, его составляющих: ядра и электрона. Чтобы обеспечить весомую защиту была разработана очень сложная система позволяющая давать результат с 95% точностью.

ICQT 2017. Джон Мартинис, Google: Квантовый компьютер: жизнь после закона Мура

Для чего все это нужно

Уже говорилось о создании квантовых компьютеров. Эти компьютеры не являются результатом того к чему стремились, но своего покупателя они нашли. Американская компания Lockheed Martin , специализирующаяся в области обороны заплатила 10 млн. долларов. Их приобретение способно находить ошибки сложнейшей программе, установленной на истребителе F-35 . Google с помощью своего приобретения хочет запустить программы для машинного обучения.

Будущее

В разработке квантового компьютера очень заинтересованы крупные компании и государство. Оно приведет к новым открытиям в области разработки криптографического алгоритма. Будет это на руку государству или хакерам решит время. Но работа по созданию и распознаванию криптоключей будет выполняться моментально. Решатся много проблем, связанных с банковской картой.

Сообщения будут передаваться с огромной скоростью и не будет проблем связаться с любой точкой на земном шаре, а может даже за ее пределами.

Такой компьютер поможет сделать , особенно в расшифровке генетического кода. Это приведет к разрешению многих медицинских проблем.

И, конечно же, приоткроет дверь в страну мистических тайн, параллельных миров.

Нас ждут сильнейшие потрясения. Все к чему мы привыкли, является только частью того мира, которому уже дали название Квантовой реальности. Выйти за рамки материального мира помогут , которые и составляют принцип работы квантового компьютера.

О квантовых вычислениях, по крайней мере в теории, говорят уже несколько десятилетий. Современные типы машин, использующие неклассическую механику для обработки потенциально немыслимых объемов данных, стали большим прорывом. По мнению разработчиков, их реализация оказалась, пожалуй, самой сложной технологией из когда-либо созданных. Квантовые процессоры работают на уровнях материи, о которых человечество узнало всего 100 лет назад. Потенциал таких вычислений огромен. Использование причудливых свойств квантов позволит ускорить расчеты, поэтому многие задачи, которые в настоящее время классическим компьютерам не по силам, будут решены. И не только в области химии и материаловедения. Уолл-стрит также проявляет заинтересованность.

Инвестиции в будущее

CME Group проинвестировала ванкуверскую компанию 1QB Information Technologies Inc., разрабатывающую программное обеспечение для процессоров квантового типа. По мнению инвесторов, такие вычисления, вероятно, окажут наибольшее влияние на отрасли, которые работают с большими объемами чувствительных ко времени данных. Примером таких потребителей являются финансовые учреждения. Goldman Sachs инвестировал в D-Wave Systems, а компания In-Q-Tel финансируется ЦРУ. Первая производит машины, которые делают то, что называется «квантовым отжигом», т. е. решает низкоуровневые задачи оптимизации с помощью квантового процессора. Intel тоже занимается инвестированием в данную технологию, хотя считает ее реализацию делом будущего.

Зачем это нужно?

Причина, по которой квантовые вычисления являются столь захватывающими, кроется в их идеальном сочетании с машинным обучением. В настоящее время это основное приложение для подобных расчетов. Отчасти самой идеи квантового компьютера - использование физического устройства для поиска решений. Иногда данную концепцию объясняют на примере игры Angry Birds. Для имитации гравитации и взаимодействия сталкивающихся объектов ЦПУ планшета использует математические уравнения. Квантовые процессоры ставят такой подход с ног на голову. Они «бросают» несколько птиц и смотрят, что происходит. В микрочип записывается птицы, их бросают, какова оптимальная траектория? Затем проверяются все возможные решения или, по крайней мере, очень большое их сочетание, и выдается ответ. В квантовом компьютере не математик, вместо него работают законы физики.

Как это функционирует?

Основные строительные блоки нашего мира - квантово-механические. Если посмотреть на молекулы, то причина, по которой они образуются и остаются стабильными - взаимодействие их электронных орбиталей. Все квантово-механические расчеты содержатся в каждой из них. Их количество растет экспоненциально росту числа моделируемых электронов. Например, для 50 электронов существует 2 в 50-й степени возможных вариантов. Это феноменально поэтому рассчитать его сегодня нельзя. Подключение теории информации к физике может указать путь к решению таких задач. 50-кубитовному компьютеру это по силам.

Заря новой эры

Согласно Лэндону Даунсу, президенту и соучредителю компании 1QBit, квантовый процессор - это возможность использовать вычислительные мощности субатомного мира, что имеет огромное значение для получения новых материалов или создания новых лекарств. Происходит переход от парадигмы открытий к новой эре дизайна. Например, квантовые вычисления можно использовать для моделирования катализаторов, которые позволяют извлекать углерод и азот из атмосферы, и тем самым помочь остановить глобальное потепление.

На передовой прогресса

Сообщество разработчиков данной технологии чрезвычайно взволновано и занято активной деятельностью. Команды по всему миру в стартапах, корпорациях, университетах и правительственных лабораториях наперегонки строят машины, в которых используются различные подходы к обработке квантовой информации. Созданы сверхпроводящие кубитовые чипы и кубиты на захваченных ионах, которыми занимаются исследователи из Университета штата Мэриленд и Национального института стандартов и технологий США. Microsoft разрабатывает топологический подход под названием Station Q, целью которого является применение неабелева аниона, существование которого еще окончательно не доказано.

Год вероятного прорыва

И это только начало. По состоянию на конец мая 2017 г. количество процессоров квантового типа, которые однозначно делают что-то быстрее или лучше, чем классический компьютер, равно нулю. Такое событие установит «квантовое превосходство», но пока оно не произошло. Хотя вероятно, что это может свершиться еще в этом году. Большинство инсайдеров говорит, что явным фаворитом является группа Google во главе с профессором физики Калифорнийского университета в Санта-Барбаре Джоном Мартини. Ее цель - достижение вычислительного превосходства с помощью 49-кубитного процессора. К концу мая 2017 г. команда успешно тестировала 22-кубитный чип в качестве промежуточного шага к разборке классического суперкомпьютера.

С чего все началось?

Идее использования квантовой механики для обработки информации уже десятки лет. Одно из ключевых событий произошло в 1981 году, когда IBM и MIT совместно организовали конференцию по физике вычислений. Знаменитый физик предложил построить квантовый компьютер. По его словам, для моделирования следует воспользоваться средствами квантовой механики. И это прекрасная задача, поскольку не выглядит такой простой. У квантового процессора принцип действия основан на нескольких странных свойствах атомов - суперпозиции и запутанности. Частица может находиться в двух состояниях одновременно. Однако при измерении она окажется только в одном их них. И невозможно предугадать, в каком, кроме как с позиции теории вероятности. Этот эффект лежит в основе мысленного эксперимента с котом Шредингера, который находится в коробке одновременно живым и мертвым до тех пор, пока наблюдатель украдкой туда не заглянет. Ничто в повседневной жизни не работает подобным образом. Тем не менее, около 1 млн экспериментов, проведенных с начала ХХ века, показывают, что суперпозиция действительно существует. И следующим шагом будет выяснение того, как использовать эту концепцию.

Квантовый процессор: описание работы

Классические биты могут принимать значение 0 или 1. Если пропустить их строку через «логические вентили» (И, ИЛИ, НЕ и т. д.), то можно умножать числа, рисовать изображения и т. п. Кубит же может принимать значения 0, 1 или оба одновременно. Если, скажем, 2 кубита запутаны, то это делает их совершенно коррелированными. Процессор квантового типа может использовать логические вентили. Т. н. вентиль Адамара, например, помещает кубит в состояние совершенной суперпозиции. Если суперпозицию и запутанность совместить с умно расположенными квантовыми вентилями, то начинает раскрываться потенциал субатомных вычислений. 2 кубита позволяют исследовать 4 состояния: 00, 01, 10 и 11. Принцип работы квантового процессора таков, что выполнение логической операции дает возможность работать со всеми положениями сразу. И число доступных состояний равно 2 в степени количества кубитов. Так что, если сделать 50-кубитный универсальный квантовый компьютер, то теоретически можно исследовать все 1,125 квадриллиона комбинаций одновременно.

Кудиты

Квантовый процессор в России видят несколько иначе. Ученые из МФТИ и Российского квантового центра создали «кудиты», представляющие собой несколько «виртуальных» кубитов с различными «энергетическими» уровнями.

Амплитуды

Процессор квантового типа обладает тем преимуществом, что квантовая механика базируется на амплитудах. Амплитуды подобны вероятности, но они также могут быть отрицательными и комплексными числами. Так что, если необходимо рассчитать вероятность события, можно сложить амплитуды всевозможных вариантов их развития. Идея квантовых вычислений заключается в попытке настройки таким образом, чтобы некоторые пути к неправильным ответам имели положительную амплитуду, а некоторые - отрицательную, и поэтому они бы компенсировали друг друга. А пути, ведущие к правильному ответу, имели бы амплитуды, которые находятся в фазе друг с другом. Хитрость в том, что необходимо все организовать, не зная заранее, какой ответ правильный. Так что экспоненциальность квантовых состояний в сочетании с потенциалом интерференции между положительными и отрицательными амплитудами является преимуществом вычислений данного типа.

Алгоритм Шора

Есть много задач, которые компьютер не в состоянии решить. Например, шифрование. Проблема заключается в том, что не так легко найти простые множители 200-значного числа. Даже если ноутбук работает с отличным ПО, то, возможно, придется ждать годы, чтобы найти ответ. Поэтому еще одной вехой в квантовых вычислениях стал алгоритм, опубликованный в 1994 г. Питером Шором, теперь профессором математики в MIT. Его метод заключается в поиске множителей большого числа с помощью квантового компьютера, которого тогда еще не существовало. По сути, алгоритм выполняет операции, которые указывают на области с правильным ответом. В следующем году Шор открыл способ квантовой коррекции ошибок. Тогда многие поняли, что это - альтернативный способ вычислений, который в некоторых случаях может быть более мощным. Тогда последовал всплеск интереса со стороны физиков к созданию кубитов и логических вентилей между ними. И вот, два десятилетия спустя, человечество стоит на пороге создания полноценного квантового компьютера.

Очередной привет всем читателям моего блога! Вчера в новостях проскочила в очередной раз пара сюжетов о «квантовом» компьютере. Мы из школьного курса физики знаем, что квант — это некая одинаковая порция энергии, еще есть словосочетание «квантовый скачок», то есть мнгновенный переход с некоего уровня энергии на еще более высокий уровень.. Давайте вместе разбираться, что такое квантовый компьютер, и что нас всех ожидает, когда появится эта чудо машина

Я впервые начал интересоваться этой темой при просмотре фильмов про Эдварда Сноудена. Как известно, этот американский гражданин собрал несколько террабайт конфидециальной информации (компромата) о деятельности спецслужб США, хорошенько зашифровал ее и выложил в Интернет. «Если, сказал он, со мной что-нибудь случиться, информация будет расшифрована и станет таким образом доступна для всех.»

Расчет был на то, что информация эта «горячая», будет актуальна еще лет десять. А расшифровать ее можно современными вычислительными мощностями то же не меньше, чем через десять или больше лет. Квантовый же компьютер по ожиданиям разработчиков справится с этой задачей минут за двадцать пять.. Криптографы в панике. Вот такой «квантовый» скачок нас скоро ожидает, друзья.

Принципы работы квантового компьютера для чайников

Раз мы уж заговорили о квантовой физике, давайте немножко поговорим о ней. Я не буду углубляться в дебри друзья. Я ведь «чайник», а не квантовый физик. Лет сто назад Энштейн опубликовал свою теорию относительности. Все умные люди того времени удивлялись, как много в ней парадоксов и невероятных вещей. Так вот, все пародоксы Энштейна, описывающие законы нашего мира — просто невинный лепет пятилетнего ребенка по сравнению с тем, что твориться на уровне атомов и молекул.

Сами «квантовые физики», описывающие явления происходящие на уровнях электронов и молекул говорят примерно так: » Это невероятно. Этого не может быть. Но это так. Не спрашивайте нас, как это все работает. Мы не знаем, как и почему. Мы просто наблюдаем. Но это работает. Это доказано экспериментально. Вот формулы, зависимости и записи экспериментов.»

Так в чем же разница между обычным и квантовым компьютером? Ведь обычный компьютер тоже работает на электричестве, а электричество — это куча очень маленьких частиц — электронов?


Наши с Вами компьютеры работают по принципу или «Да» или «Нет». Если есть ток в проводе, это «Да»или «Единица». Если тока в проводе «Нет», то это «Ноль». Вариант значения «1 «и «0» есть единица хранения информации под названием «Бит».. Один байт это 8 бит и так далее и так далее…

Теперь представьте ваш процессор, на котором 800 миллионов таких «проводов» на каждом из которых за секунду появляется и исчезает такой вот «ноль» или «единица». И вы мысленно можете вообразить, как он обрабатывает информацию. Вы сейчас читаете текст, но на самом деле это совокупность нулей и единиц.

Путем перебора и вычислений Ваш компьютер обрабатывает Ваши запросы в Яндексе, ищет нужные до тех пор, пока не решит задачу и путем исключения не докопается до нужной Вам. Выводит на монитор шрифты, картинки в читаемом для нас виде… Пока надеюсь ничего сложного? А картинка — это тоже нули и единицы.

Представьте теперь себе друзья на секунду модель нашей солнечной системы. В центре Солнце, вокруг него летит Земля. Мы знаем, что она в определенный момент всегда находится в определенной точке пространства и через секунду она уже улетит на тридцать километров дальше.

Так вот, модель атома то же планетарная, там атом тоже вращается вокруг ядра. Но ДОКАЗАНО, друзья, умными парнями в очках, что атом в отличии от Земли одновременно и всегда находится во всех местах..Везде и нигде одновременно. И назвали они это замечательное явление «суперпозицией». Для того, чтобы познакомится поближе и другими явлениями квантовой физики, предлагаю глянуть научно-популярный фильм, где простым языком рассказывается о сложном и в довольно оригинальной форме.

Продолжим. И вот на смену «нашему» биту приходит квантовый бит. Его еще называют «Кубит». У него то же всего два исходных состояния «ноль» и «единица». Но, так как природа его «квантовая», то он может ОДНОВРЕМЕННО принимать все возможные промежуточные значения. И одновременно находиться в них. Теперь значения не надо последовательно вычислять, перебирать.., долго искать в базе. Они известны уже заранее, сразу. Вычисления идут параллельно.

Первые «квантовые» алгоритмы для математических вычислений были придуманы еще математиком из Англии Питером Шором в 1997 году. Когда он показал их миру, все шифровальщики здорово напряглись, так как существующие шифры «раскалываются» этим алгоритмом за несколько минут.. Вот только компьютеров, работающих по квантовому алгоритму тогда еще не было.

С тех пор с одной стороны идет работа по созданию физической системы, в которой бы работал квантовый бит. То есть «железа». А с другой стороны уже придумывают защиту от квантового взлома и расшифровки данных.

А что сейчас? А вот так выглядит квантовый процессор под микроскопом на 9 кубит от фирмы Google.

Неужели они нас обогнали? 9 кубит или по «старому» 15 бит, это не так много пока еще. Плюс дороговизна, масса технических проблем и короткое время «жизни» квантов. Но вспомните что сначала были 8 битные, потом появились 16 битные процессоры… Так будет и с этими …

Квантовый компьютер в России — миф или реальность?

А мы что же? А мы то же не за печкой родились. Вот нарыл фото первого российского Кубита под микроскопом. Тут правда он один.

Тоже выглядит как некая «петля», в которой происходит нечто для нас пока не познанное. Отрадно думать, если наши при поддержке государства разрабатывают свое. Так что отечественные разработки это уже не миф. Вот оно, наше будущее. Каким оно будет, посмотрим.

Последние новости о квантовом компьютере России мощностью 51 кубит

Вот новости этого лета. Наши дядечки (честь им и хвала!) разработали самый мощный в мире (!) квантовый (!) компьютер 51 кубит(!)т. Самое интересное то, что до этого Google анонсировало свой компьютер на 49 кубит. И по их оценкам они должны были его закончить через месяц или около того. А наши решили показать уже готовый, свой квантовый процессор на 51 кубит.. Браво! Вот какая идет гонка. Нам хотя бы не отставать. Потому что ожидается большой прорыв в науке, когда эти системы заработают. Вот фото человека, который представлял нашу разработку на «квантовом» международном форуме.

Фамилия этого ученого — Михаил Лукин. Сегодня его имя в центре внимания. Невозможно создать такой проект в одиночку, мы это понимаем. Он и его команда создали на сегодня самый мощный в мире(!) квантовый компьютер или процессор. Вот что говорят по этому поводу компетентные лица:

«Квантовый компьютер функционирующий, он гораздо страшнее атомной бомбы, - отмечает сооснователь Российского квантового центра Сергей Белоусов. - Он (Михаил Лукин) сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это более чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49. Потому что Google всё время говорили, что сделают 49».

Впрочем, сам Лукин и руководитель квантовой лаборатории Google Джон Мартинес конкурентами или соперниками себя не считают. Учёные убеждены, что их главным соперником является природа, а основной целью - развитие технологий и их внедрение для продвижения человечества на новый виток развития.

«Неправильно думать об этом, как о гонке, - справедливо считает Джон Мартинес. - Настоящая гонка у нас с природой. Потому что это действительно сложно - создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов. Пока 22 кубита - это максимум, что мы могли сделать. Хоть мы и использовали всё своё волшебство и профессионализм».

Да, все это очень интересно. Если вспомнить аналогии, когда изобрели транзистор, никто не мог знать, что на этой технологии через 70 лет будут работать компьютеры. В одном только современном процессоре количество их достигает 700 миллионов..Первый компьютер весил много тонн и занимал большие площади. Но персональные компьютеры все равно появились — много позже…

Я думаю, что пока нам в ближайшее время не стоит ждать появления в наших магазинах устройств такого класса. Многие их ждут. Особенно добытчики криптовалют много спорят по этому поводу. С надеждой взирают на него ученые, и с пристальным вниманием — военные. Потенциал этой разработки как мы понимаем, до конца не ясен.

Ясно только, что когда это все заработает, оно потащит вперед за собой всю наукоемкую промышленность.Постепенно появятся новые технологии, новые отрасли, новый софт.. Время покажет. Только бы не подвел человеков свой собственный квантовый компьютер, данный нам при рождении — это наша голова. Так что, пока не спешите выкидывать на помойку свои гаджеты. Они долго Вам еще послужат. Пишите, если статья была интересной. Заходите чаще. До свидания!



Статьи по теме