Последовательное подключение пельтье. Модуль Пельтье: технические характеристики

Что такое элемент Пельтье – электро-, термопреобразователь, который состоит из нескольких пар (в отдельных случаях одной) полупроводников различных по свойству типов («n» и «р»), последние соединяются перемычками из металла – в основном это - медь. На практике данное устройство создает температурную разность на разных концах поверхности при протекании энергии электрического тока.

Одним из наиболее простейших вариантов данного устройства Пельтье в практическом использовании является модификация ТЕС1-12706, изображенная на рисунке 1.

В корне принципа работы положен термоэлектрический эффект Пельтье. Другими словами - при протекании и под действием электрического тока создается разница температур в местах контактов термопар - полупроводников «n» и «р» - типа.

Элементы Пельтье – доволи таки «чувствительные устройства» к перегреву и высоким температурам. К ним предъявляются высокие требования к эксплуатации, при невыполнении которых, устройство быстро выходит из строя. Очень важно отводить тепло, для этой цели необходимо устанавливать радиатор или вентилятор, в противном случае не достигается температура холодной стороны относительно горячей.

Как работает элемент Пельтье

Представим, что электрический ток проходит через термическую пару, как показано на рисунке 2.

В этом случае происходит процесс поглощения энергии тепла на полупроводниковом контакте n - p и процесс выделения тепловой энергии на p - n контакте. В итоге часть термопары полупроводника, который сопрягается с n - p контактом, будет охлаждаться, а вторая часть с другой противоположной стороны - соответственно, нагреваться.

В том случае, когда поменяем полярность по току, то происходит процессы нагревания и охлаждения, соответственно, также поменяются.

Обратный процесс эффекта Пельтье приводит к тому, что при подводе теплоты к одной стороне термопреобразователя получают энергию электрического тока.

Конечно на практике, применение одной термопары не хватает для полного отвода тепловой энергии, поэтому в преобразователе применяют большое количество. Электрическая цепь собирается из термопар последовательно. В то же время в конструкции термопреобразовательных элементов: нагревающие термопары располагаются на другой стороне относительно охлаждающих.

Устройство элемента Пельтье очень простое. Термические пары конструируются между двумя платинами, выполненными из керамики. Соединение термопар производится медными проводниками (шинами). Количество термопар определяется назначением термопреобразователя, его мощности и места установки и может применяться от одной до нескольких сотен штук.

Основными элементами термопреобразователя являются: полупроводники р - типа, n - типа, керамические пластины, медные сопряжения - проводники; контакты подвода электрического тока «плюс» и «минус». Для элемента Пельтье разница по температурам разных краев термопар достигает до 70 градусов по Цельсию. Чтобы увеличить данную разницу требуется увеличить каскад последовательного включения термопар.

Основные эксплуатационные характеристики элемента Пельтье

Данное устройство в целом идеально работает в тех случаях, когда хорошо и надежно контактируют термопары с охладительным устройством, будь то радиатор охлаждения или вентилятор охлаждения со змеевиком, то есть – хороший теплосъем.

Модули Пельтье, как их часто называют, очень чувствительны к перепадам по току и напряжению (не более 5 %). Под действием высоких температур (наиболее критическая для элементов до 150 градусов) эффективность снижается во много раз (до 40 %) и модуль очень быстро ломается.

Как правило, в схему работы полупроводниковых элементов недопустимым условием является приспособление релейных устройств: ограничивающих мощность или регулирующих. Это приводит к деградации кристаллических составляющих и к неисправности в скором времени элемента.

Частое включение и выключение устройств также негативно влияет на работу и срок эксплуатации, и его долговечность функционирования. Согласно законов физики - любой нагрев материала приводит к его тепловому расширению, а охлаждение - к сжатию. Соответственно, особенно слабыми местами в полупроводниковых элементах являются «паечные», где из-за механического движения возможно появление дефектов в виде микротрещин и в конце концов к разрыву цепи.

Коэффициент теплопроводности термических пар элемента Пельтье достаточно высок, что с одной стороны является достоинством, а с другой стороны ограничивает срок эксплуатации и расчетное число циклов «стоп-старт-стоп».

Достоинства и недостатки модуля Пельтье

Сравнивать устройство Пельтье с другими охладительными установками с различным приводом в принципе невозможно и нецелесообразно, так как в первом случае имеют полупроводниковые материалы в виде кристаллов, а во втором случае рабочее тело - газ или жидкость (к примеру: компрессорный холодильник). В различных областях применяются и те и другие устройства.

К преимуществам элементов Пельтье можно отнести:

  • полное отсутствие механики движения и вращающихся частей, а также жидкостей, газов;
  • абсолютно нет шума работы устройств;
  • сравнительно малые размеры;
  • двухфункциональность: нагревание и охлаждение при изменении полярности;

К недостаткам можно отнести:

  • относительно низкий коэффициент полезного действия;
  • требование постоянного источника энергии, питания;
  • число пусков и остановов ограничено;
  • плавность отключения и включения термоэлектрических устройств;
  • контроль нагрева с одной стороны или охлаждения с другой с помощью вентилятора.

Опрос: Понятно ли что такое и как устроен Элемент Пельтье

Тема охлаждения компонентов ПК волнует многих пользователей. Большинство из них ограничиваются стандартными воздушными кулерами, отдельные энтузиасты собирают СВО. А что же дальше? Наверняка те, кто серьезно интересовался разгоном, слышали о модулях Пельтье (или термоэлектрических модулях, далее по тексту - ТЭМ; английский вариант - TEC, Thermoelectric Cooler) и их применении в качестве тепло-отводов для сильно-греющихся элементов компьютера.

Однако зачастую даже базовую информацию по правильному использованию этих удивительных устройств найти трудно, отсюда - многочисленные ошибки тех, кто впервые с ними сталкивается. К слову, производители систем охлаждения также экспериментируют с модулями Пельтье, порой представляя на суд публики весьма любопытные концепты. Как работают ТЭМ, действительно ли они так уж небходимы в СО компьютера, как самостоятельно собрать нехитрые кулеры и избежать простейших ошибок, достаточно характерных для новичков, - обо всем этом мы расскажем в данном материале.

Немного теории

Чем же на самом деле являются модули Пельтье? В базовом определении это термоэлектрические преобразователи, принцип действия которых основан на эффекте Пельтье, открытом в далеком 1834 году. Суть данного процесса заключается в возникновении разности температур в месте контакта материалов при протекании сквозь них электрического тока.

Мы не станем вдаваться в подробности истории открытия и научного обоснования специфики работы ТЭМ, поскольку этой теме можно посвятить целую диссертацию. Однако общие понятия упомянем.

Базовая схема устройства ТЭМ

Элементы Пельтье состоят из двух токопроводящих материалов (полупроводников) с разными уровнями энергии электронов в зоне проводимости. Физика протекания тока через подобные вещества такова, что для перехода электронов им требуется определенная подпитка, получаемая в момент прохождения тока через спайку. В таком случае возможно перемещение частиц в высокоэнергетическую зону проводимости от одного материала к другому. Место соприкосновения полупроводников в момент поглощения энергии охлаждается. Изменение направления тока или перемещение электронов из более энергетической зоны в менее насыщенную приводит к нагреву места контакта. Помимо этого, в модулях Пельтье наблюдается тепловой эффект, характерный для любых веществ, сквозь которые пропускают электрический ток. Вообще процессы, присущие ТЭМ, проявляются и в месте контакта обычных металлов, однако определить их без сложных приборов почти нереально. Поэтому основой для модулей служат полупроводники.

Элемент Пельтье состоит из одной или более пар полупроводниковых параллелепипедов разных типов (как в диодах или транзисторах, n- и p-типа). Современная индустрия для этих целей наиболее часто выбирает германид кремния и теллурид висмута. Полупроводники попарно соединяются металлическими перемычками из легкоплавких веществ. Последние выполняют роль термоконтактов и напрямую соприкасаются с керамической пластинкой или подставкой. Пары полупроводников соединены последовательно, разные виды проводимости контактируют друг с другом. С одной стороны модуля имеются лишь n->p-переходы, с другой - p->n. Течение тока вызывает охлаждение и нагревание противоположных групп контактов. Поэтому можно говорить о переносе током тепловой энергии с одной стороны модуля Пельтье на другую и, как следствие, возникновении разности температур на пластинке. Правильное применение модулей позволяет извлечь некоторые выгоды для промышленных, в том числе компьютерных СО. К слову, элементы могут быть использованы и в качестве электрогенераторов - основываясь на тех же принципах работы, физика протекающих внутри процессов объясняется эффектом Зеебека (условно говоря, тот же эффект Пельтье с «противоположным знаком»).

Плюсы и минусы применения ТЭМ

Зачастую к достоинствам модулей Пельтье относят:

  • сравнительно небольшие габариты;
  • возможность работы и на охлаждение, и на нагревание системы;
  • отсутствие движущихся частей, механических составляющих, подверженных износу.

В то же время ТЭМ обладают рядом недостатков, существенно сдерживающих их повсеместное практическое применение. Среди них следующие:

  • низкий КПД модулей;
  • необходимость наличия источни- ка тока для их работы;
  • большая потребляемая мощ- ность для достижения заметной разности температур и, как следствие, существенное тепло- выделение;
  • ограниченные габариты и полезные характеристики.

Однако, невзирая на негативные характеристики модулей Пельтье, они нашли свое применение в ряде продуктов. ТЭМ выгодны в первую очередь там, где энергетическая эффективность охладителя некритична, чем меньше - тем лучше. Элементы служат для охлаждения устройств с зарядовой связью в цифровых фотокамерах, позволяющих добиться заметного уменьшения теплового шума при длительных экспозициях. Модули Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с целью стабилизации длины волны их излучения. Возможно использование нескольких ТЭМ, составленных последовательно в виде каскадов (холодная сторона одного охлаждает горячую другого), благодаря чему реально достичь очень низких температур для устройств, обладающих малым тепловыделением. Элементы Пельтье - основа компактных холодильников, в первую очередь автомобильных. Их применяют и в миниатюрных сувенирах из области компьютерной периферии, и в производительных СО в качестве основных или вспомогательных компонентов. Именно о последнем варианте мы и поговорим более подробно.

Модули Пельтье в ПК: практика

При переходе к практической реализации СО на базе ТЭМ нужно сделать несколько оговорок, которые позволят правильно подобрать параметры итоговых конструкций. Нередко эксперименты новичков заканчиваются плачевно: либо температуры на «холодной» стороне модулей во время работы получаются выше, чем на горячей, либо системы демонстрируют откровенно слабые результаты даже по сравнению со стоковыми кулерами без элементов Пельтье. Причины зачастую кроются в неправильном расчете (или построении СО наугад). Дело в том, что любой ТЭМ имеет свои штатные характеристики, обычно выделяют два значения (рассмотрим их на примере модуля ТЕС1-12709 с заявленной максимальной мощностью 136 Вт), например, пишут, что ΔTmax Qcmax=0(°С) 66 и Qcmax ΔTmax=0(W) 89.2. Перефразируя данное выражение: модуль способен обеспечить максимальный перепад температур между сторонами, равный 89,2 ºС при отсутствии тепловой нагрузки и 0 ºС при наличии таковой на «холодную» сторону 66 Вт. Таким образом, полезная нагрузка модуля лежит в пределах от 0 до 66 Вт, в идеале - чем меньше - тем лучше и тем большую разницу температур обеспечит ТЭМ. В то же время любой модуль имеет другую характеристику - максимальную потребляемую мощность, которую тоже нужно отвести от него с помощью системы охлаждения. Для рассматриваемого ТЕС1-12709 Umax (В) равно 15.2 В, I max- 9 А. Следовательно, при указанных параметрах имеем энергопотребление 136,8 Вт, что, согласитесь, немало.

Система охлаждения должна успешно отводить тепло непосредственно от модуля (обеспечивая максимально возможную низкую температуру «горячей» стороны) и компонентов ПК. Примерный КПД такой системы можете вычислить сами - при полезной составляющей в 150-200 Вт (приблизительно столько выделяют современные разогнанные CPU) для получения хоть каких-то видимых результатов придется затратить не менее 600-800 Вт электрической мощности и отвести не менее киловатта тепловой. Именно поэтому производительные СО на базе модулей Пельтье не получили широкого распространения. Впрочем, прецеденты сравнительно успешной реализации гибридных кулеров известны, а мы попытаемся создать свои - маломощный и оптимальный. Чтобы избежать ограничений в виде недостаточного теплоотвода, на «горячую» сторону ТЭМ поместим производительные водоблоки, подключенные в контур СВО. Кстати, модули Пельтье нельзя устанавливать непосредственно на ядро/теплораспределительную крышку чипов - тонкая керамическая подкладка не способна поддерживать эффективную теплопередачу ко всем полупроводниковым парам, составляющим ТЭМ. Для этой цели лучше всего подойдет промежуточный «буфер» - медная пластинка толщиной 5-7 мм, полностью закрывающая поверхность модуля. К слову, оптимальный режим эксплуатации элементов Пельтье обеспечивается при пониженных напряжении и потребляемом токе. Приближение этих параметров к максимальным существенно повышает тепловую отдачу пластины, однако не так ощутимо - полезную составляющую.

Мы решили по максимуму охладить графический чип видеокарты Radeon HD 4350 и CPU Core 2 Duo E8500, попытавшись разогнать данные компоненты. Для отвода тепла от GPU использовались уже упомянутый ТЕС1-12709 (максимальная потребляемая мощность - 136 Вт) и самодельный медный водоблок, в паре с процессором работали ТЕС1-12726 (395 Вт) и один из лучших промышленных водоблоков Swiftech Apogee GT. Модули подключались напрямую к компьютерному БП в 12-вольтовую цепь. Применение киловаттного be quiet! Dark Power PRO BQT P6PRO-1000W давало все основания не переживать за недостаток мощности для питания ПК и элементов системы охлаждения. В контуре СВО трудились два «двойных» радиатора под 120-миллиметровые вентиляторы и помпа Hydor Seltz L30 (производительностью 1200 л/ч на холостом ходу).

В случае охлаждения компонентов до температур ниже комнатных (в частности, ниже «точки росы») стоит ожидать появления конденсата на переохлажденных поверхностях. Понятно, что вода в таком виде является главным врагом пользователя, и ее выделение необходимо предупредить. Делается это путем тщательной теплоизоляции любых поверхностей (частей РСВ, околосокетного пространства с обеих сторон платы, собственно ТЭМ, теплораспределителя процессора и GPU) материалами, не пропускающими воздух. Лучше всего для этих целей подходит стандартный теплоизоляционный материал для труб водоснабжения (на основании вспененного каучука), специальные замазки, отдельные виды поролона, поставляемого в комплекте с компонентами ПК, на худой конец термопаста и бумажные салфетки. В последнем случае допустима эксплуатация ПК лишь для проведения кратковременных бенчинг-сессий. Теплоизоляция обеспечит повышение общего КПД установки.

Итоговые температуры, полученные в различных режимах работы компонентов, их сравнение с показателями, обеспечиваемыми исключительно системой водяного охлаждения, приведены в диаграмме. Как видите, модули Пельтье позволили понизить температуру компонентов ощутимо ниже комнатной (в зависимости от загрузки). В таких условиях не составило особого труда разогнать процессор до частоты 4,3 ГГц с повышением напряжения питания до 1,35 В, а GPU заставить функционировать на 800 МГц (штатное значение - 600 МГц). В то же время мы получили ощутимый нагрев СО тестового стенда (в корпусе ситуация усугубилась бы более существенно) и резкий рост уровня энергопотребления ПК (собственно, вся конструкция потребляет больше, чем отдельно взятый компьютер на базе компонентов тестового стенда). Подобное решение однозначно пригодится в зимнюю пору, однако летом вряд ли порадует большинство пользователей.

Готовы ли вы на такие жертвы ради достижения сравнительно низких температур на компонентах ПК? Решайте сами, но помните о базовых советах, приведенных в этой части материала, - они помогут правильно применить модули Пельтье на практике. Использование систем охлаждения на основе ТЭМ разумно и оправданно в случае с маломощными компонентами (чипсетами материнских плат, GPU низко- и среднеуровневых видеокарт). Не забывайте и о теплоизоляции охлаждаемых элементов - ведь конденсат является главным врагом системы во время экспериментов с ТЭМ.

Выводы

Подытоживая вышесказанное относительно особенностей работы модулей Пельтье и целесообразности их практического применения, повторимся: ТЭМ имеют упомянутые преимущества и недостатки, которые не позволяют дать однозначного ответа на вопрос: «А стоит ли…?» Их использование оправданно для отвода незначительных тепловых нагрузок (именно к таковым относятся компактные холодильники, термостатированные лазеры; СО для маломощных компонентов ПК - чипсетов и отдельных GPU).

На базе элементов Пельтье можно создавать различные самодельные охлаждающие и нагревающие устройства, существуют примеры успешной реализации маломощных генераторов. Но прежде чем заниматься изготовлением подобных конструкций, ознакомьтесь все же с теоретической составляющей - предварительная подготовка избавит от ошибок и сэкономит время в момент практического воплощения проектов.

Говорить о применении модулей Пельтье в ПК следует достаточно осторожно: прочитав о получении низких температур на охлаждаемых элементах, новички часто забывают о значительной потребляемой и выделяемой мощности подобных СО, не учитывают параметры и «запас прочности» отдельно взятой конструкции. ТЭМ заинтересуют в первую очередь оверклокеров, для которых любой выигрышный градус и каждый мегагерц важны. Рассматриваемые элементы - промежуточное звено между классическими системами водяного охлаждения и чиллерами или фреонками, работающими по принципу фазового перехода. Впрочем, применение ТЭМ отнюдь не назовешь простым, поэтому прежде чем приступать к серьезным экспериментам, тщательно взвесьте все «за» и «против».

Готовые СО на базе ТЭМ

Модули Пельтье используются производителями систем охлаждения для ПК в качестве основных и вспомогательных компонентов кулеров. Порой из этого получаются эффектные действенные устройства, иногда все выходит не так гладко, как изначально задумывалось. Мы решили вспомнить об основных СО, применяющих ТЭМ, которым прочили роль революционеров своего времени.

Один из первых кулеров с элементом Пельтье, наделавший сравнительно много шума в сфере охлаждения CPU (2003 год). Однако невысокий запас прочности, значительное по тем временам энергопотребление, громоздкость конструкции и шумность в работе не позволили ему закрепиться на рынке. Появись эта модель на год-два раньше - возможно, все обернулось бы иначе.

Суперкулер для видеокарт, построенный по тому же принципу, что и Titan Amanda: одна половина радиатора работает непосредственно на отвод тепла от GPU, другая охлаждает горячую сторону ТЭМ. В свое время оказался одним из лучших во время тестирования СО для графических адаптеров. (Мы писали о нем в «Домашнем ПК» в 2007 году.)

Самое мощное современное решение для охлаждения CPU, использующее элемент Пельтье. Представляет собой производительный водоблок, отводящий тепло от ТЭМ (около 400 Вт потребляемой электрической мощности), который, в свою очередь, создает оптимальный температурный режим процессора. Эта система способна обеспечить функционирование Core i7 на частоте порядка 4 ГГц при температуре около 0 ºС (режим простоя) и 20-30 ºС в режиме максимальной нагрузки.

Аналогично процессорному решению представляет собой высокопроизводительный водоблок для графического адаптера, дополненный модулем Пельтье. В зависимости от TDP видеочипа способно удерживать его температуру на уровне комнатной или ниже.

Элементы Пельтье этой СО охлаждают часть тепловых трубок. Подход достаточно интересный и правильный, применение модулей позволяет сбить пару-тройку градусов на процессоре. Однако экономическая целесообразность такого хода - под большим вопросом, ввиду того что V10 при существенной цене не в состоянии обогнать лучшие воздушные суперкулеры. Скорее всего, виноваты особенности конструкции и недостаточная мощность ТЭМ.

Серия достаточно современных процессорных суперкулеров на тепловых трубках, использующих термоэлектрический модуль (2007-2008 гг). Часть радиатора отводила тепло непосредственно от ТЭМ, тогда как другая половина охлаждала греющийся компонент. Подобный подход к проектированию позволяет избежать резкой перегрузки СО вследствие превышения лимитов тепловыделения модуля Пельтье. Кулеры линейки Amanda демонстрировали отличные результаты с процессорами, обладающими сравнительно невысоким TDP.

XtremeLabs.org MONSTER T.E.C. Project

Владельцев СВО и тех, кто собирается обзавестись жидкостными системами, могут заинтересовать так называемые чиллеры на базе элементов Пельтье. В зависимости от типа подключения ТЭМ в контур они позволят немного понизить температуру теплоносителя, а при создании мощных СО даже обеспечат температуру хладагента, близкую к нулевой.

Известный нашим читателям энтузиаст Wehr-Wolf давно интересовался затронутой темой эффективного охлаждения компонентов ПК и их дальнейшего экстремального разгона. Начиналось все в далеком 2005 году с теоретических набросков, рассуждений и одного из главных компонентов системы - массивного «бутерброда», состоящего из больших водоблоков. Однако заброшенные на длительное время задумки удалось реализовать лишь совместно с автором данного материала, в середине этого года запустив энтузиастский проект XtremeLabs.org MONSTER T.E.C. Project.

Первый пуск ТЭМ-чиллера в полевых условиях

Принцип работы системы достаточно прост: модули Пельтье (8 ТЭМ с максимальной потребляемой мощностью 136 Вт каждый) охлаждают с двух сторон большой медный водоблок, а сами, в свою очередь, охлаждаются аналогичными водоблоками. «Холодный» и «горячий» контуры СВО полностью разделены между собой. Для питания такого количества ТЭМ в процессе первого запуска использовались два компьютерных БП с общей заявленной мощностью 1200 Вт, в качестве охладителя «горячего» контура выступала СЖО с двумя радиаторами под два 120-миллиметровых вентилятора каждый, прокачиваемая мощной помпой. Однако даже такой СВО оказалось недостаточно, и радиаторы пришлось продувать высокопроизводительными промышленными вентиляторами. В «холодный» контур были подключены помпа Hydor L20 II и водоблок Swiftech Apogee GT, охладителем выступал большой водоблок, контактирующий с «холодной» стороной ТЭМ. В результате первого эксперимента удалось добиться температуры воды в контуре порядке 5-7 ºС, при этом в качестве нагрузки для системы использовался процессор Core i7 965 Extreme Edition, разогнанный до частоты 4 ГГц.

С одной стороны, полученные результаты действительно впечатляют - подобные температуры при таких нагрузках способны обеспечить разве что чиллеры на основе систем фазового перехода, с другой - а стоит ли овчинка выделки? Чудовищная потребляемая мощность системы, громоздкая СО «горячего» контура, высокая общая стоимость оправдываются лишь концептуальным статусом XtremeLabs.org MONSTER T.E.C. Project, на данный момент находящимся в стадии доработки.

Элементом Пельтье принято называть преобразователь, который способен работать от разности температур. Происходит это путем протекания электрического тока по проводникам через контакты. Для этого в элементах предусмотрены специальные пластины. Тепло от одной стороны переходит в другую.

На сегодняшний день указанная технология является востребованной в первую очередь из-за значительной мощности теплоотдачи. Дополнительно устройства способны похвастаться компактностью. Радиаторы для многих моделей устанавливаются слабенькие. Связано это с тем, что тепловой поток довольно быстро остывает. В результате нужная температура поддерживается постоянно.

Подвижных частей указанный элемент не имеет. Работают устройства абсолютно бесшумно, и это является несомненным преимуществом. Также следует сказать, что эксплуатироваться они способны очень долго, а случаи поломок возникают крайне редко. Самый простой тип состоит из медных проводников с контактами и соединительными проводами. Дополнительно с охлаждающей стороны имеется изолятор. Изготовляют его, как правило, из керамики или

Зачем нужны элементы Пельтье?

Элементы Пельтье чаще всего используются для изготовления холодильников. Обычно речь идет о компактных моделях, которые могут применяться, к примеру, автомобилистами в дороге. Однако на этом область применения устройств не подходит к концу. В последнее время элементы Пельтье активно начали устанавливать в звуковую, а также акустическую технику. Там они способны выполнять функции куллера.

В результате охлаждение усилителя устройства происходит без какого-либо шума. Для портативных компрессоров элементы Пельтье являются незаменимыми. Если говорить о научной отрасли, то ученые применяют данные устройства для охлаждения лазера. При этом можно добиться значительной стабилизации волны изучения у светодиодов.

Недостатки моделей Пельтье

Казалось бы, такое простое и эффективной устройство лишено недостатков, однако они имеются. В первую очередь специалисты сразу отметили малую пробивную способность модуля. Это говорит о том, что у человека возникнут определенные проблемы, если он захочет охладить прибор, который работает от сети с напряжением 400 В. В данном случае частично поможет решить эту проблему специальная диэлектрическая паста. Однако пробой тока все равно будет высоким и обмотка элемента Пельтье может не выдержать.

Дополнительно указанные модели не советуют применять для точной электроники. Поскольку в конструкции элемента имеются металлические пластины, то чувствительность транзисторов может нарушаться. Последним недостатком элемента Пельтье можно назвать малый коэффициент полезного действия. Достигнуть значительной разности температур указанные устройства не способны.

Модуль для регулятора

Сделать элемент Пельтье своими руками для регулятора довольно просто. Для этого следует заранее заготовить две металлические пластины, а также проводку с контактами. В первую очередь для установки готовят проводники, которые будут располагаться у основания. Обычно их закупают с маркировкой "РР".

Дополнительно для нормального контроля температуры следует предусмотреть полупроводники на выходе. Они необходимы для того, чтобы быстро отдавать тепло на верхнюю пластину. Для установки всех элементов следует использовать паяльник. Чтобы доделать элемент Пельтье своими руками, в последнюю очередь подсоединяют два провода. Первый монтируется у нижнего основания и фиксируется у крайнего проводника. Соприкосновения при этом с пластиной следует избегать.

Далее крепят второй провод у верней части. Фиксация осуществляется также к крайнему элементу. Для того чтобы проверить работоспособность устройства, применяют тестер. Для этого два провода нужно подсоединить к прибору. В результате отклонение напряжения должно составить примерно 23 В. В данной ситуации многое зависит от мощности регулятора.

Холодильники с терморезистором

Как сделать элемент Пельтье своими руками для холодильника с терморезистором? Отвечая на этот вопрос, важно отметить, что пластины для него подбираются исключительно из керамики. При этом проводников используется около 20 штук. Это необходимо для того, чтобы перепад температуры был более высоким. Повысить можно до 70 %. В данном случае важно рассчитать

Сделать это можно исходя из мощности оборудования. Холодильник на жидком фреоне в этом случае походит идеально. Непосредственно элемент Пельтье устанавливается возле испарителя, который располагается рядом с мотором. Для его монтажа потребуется стандартный набор инструментов, а также прокладки. Они необходимы для того, чтобы оградить модель от пускового реле. Таким образом, охлаждение нижней части устройства будет происходить намного быстрее.

Чтобы добиться получения разницы в температурах (эффект Пельтье) своими руками, проводников может понадобиться не менее 16 штук. Главное при этом - надежно изолировать провода, которые будут подключаться к компрессору. Для того чтобы сделать все правильно, нужно в первую очередь отсоединить осушитель холодильника. Только после этого есть возможность соединить все контакты. По завершении установки предельное напряжение следует проверить при помощи тестера. При нарушении работы элемента в первую очередь страдает терморегулятор. В некоторых случая происходит его

Модель для холодильника 15 В

Делается холодильник Пельтье своими руками с малой Крепятся модули в основном возле радиаторов. Для того чтобы надежно их закрепить, специалисты используют уголки. К фильтру элемент не должен прислоняться, и это следует учитывать.

Чтобы доделать термоэлектрический модуль Пельтье своими руками, нижнюю пластину в основном выбирают из нержавеющей стали. Проводники, как правило, применяются с маркировкой "ПР20". Нагрузку они максимум способны выдерживать на уровне 3 А. Максимальное отклонение температуры способно достигать 10 градусов. В этом случае коэффициент полезного действия может составлять 75 %.

Элементы Пельтье в холодильниках 24 В

Используя элемент Пельтье, холодильник своими руками сделать можно только из проводников с хорошей герметизацией. При этом они для охлаждения должны укладываться в три ряда. Рабочий ток в системе обязан поддерживаться на уровне 4 А.. Проверить его можно при помощи обычного тестера.

Если использовать керамические пластины для элемента, то максимального отклонения температуры можно добиться в 15 градусов. Провода к конденсатору устанавливаются только после того, как будет подложена прокладка. Закрепить ее на стенке устройства можно разными способами. Главное в данной ситуации - не использовать клей, который чувствителен к температурам свыше 30 градусов.

Элемент Пельтье для автомобильного охладителя

Чтобы сделать качественный автохолодильник своими руками, Пельтье (модуль) подбирается с пластиной, толщина которой не более 1.1 мм. Провода лучше всего использовать немодульного типа. Также для работы потребуются медные проводники. Их пропускная способность должна составлять не менее 4А.

Таким образом, максимальное температурное отклонение будет доходить до 10 градусов, это считается нормальным. Проводники чаще всего используют с маркировкой "ПР20". Они в последнее время показали себя более стабильными. Также они подходят для различных контактов. Для соединения устройства с конденсатором используют паяльник. Качественная установка возможна только на блок реле прокладку. Перепады в данном случае будут минимальными.

Как сделать элемент для кулера питьевой воды?

Для фиксации их можно воспользоваться обычными гаечками. Появление излишнего шума при эксплуатации говорит том, что устройство работает не должным образом. В данном случае необходимо проверит целостность проводки. Также нужно осмотреть проводники.

Элемент Пельтье для кондиционера

Чтобы качественно сделать элемент Пельтье своими руками для кондиционера, пластины используют двойные. Минимальная их толщина должна составлять не менее 1 мм. В таком случае можно надеяться на температурное отклонение в 15 градусов. Производительность кондиционеров после оснащения модулей в среднем увеличивается на 20 %. Многое в данной ситуации зависит от температуры окружающей среды. Также следует учитывать стабильность напряжения от сети. При небольших помехах нагрузка устройством выдерживается примерно 4 А.

При пайке проводников их следует размещать не слишком близко друг к другу. Чтобы правильно доделать модули Пельтье своими руками, входные и выходные контакты надо устанавливать только на одну из двух пластин. В таком случае прибор получится более компактным. Грубой ошибкой в данной ситуации будет подключать модуль непосредственно к блоку. Это приведет к неминуемой поломке элемента.

Установка модуля на конденсатор

Чтобы установить модуль Пельтье своими руками, важно оценить мощность конденсатора. Если она не превышает 20 В, то элемент следует монтировать с проводниками, на которых указана маркировка "ПР30" или "ПР26". Для того чтобы закрепить модуль Пельтье (элемент) своими руками на конденсаторе, используют маленькие металлические уголки.

Лучше всего их устанавливать по четыре на каждую из сторон. По производительности конденсатор, в конечном счете, способен прибавить плюс 10 %. Если говорить о теплопотерях, то они будут незначительными. Коэффициент полезного действия прибора в среднем равняется 80 %. Для высоковольтных конденсаторов модули не рассчитаны. В данном случае не поможет даже большое количество проводников.

Полупроводниковые холодильники Пельтье

Работа современных высокопроизводительных электронных компонентов, составляющих основу компьютеров, сопровождается значительным тепловыделением, особенно при эксплуатации их в форсированных режимах разгона (overclocking). Эффективная работа таких компонентов требует адекватных средств охлаждения, обеспечивающих необходимые температурные режимы их работы. Как правило, такими средствами поддержки оптимальных температурных режимов являются кулеры, основой которых являются традиционные радиаторы и вентиляторы.

Надежность и производительность таких средств непрерывно повышаются за счет совершенствования их конструкции, использования новейших технологий и применения в их составе разнообразных датчиков и средств контроля. Это позволяет интегрировать подобные средства в состав компьютерных систем, обеспечивая диагностику и управление их работой с целью достижения наибольшей эффективности при обеспечении оптимальных температурных режимов эксплуатации компьютерных элементов, что повышает надежность и удлиняет сроки их безаварийной работы.

Параметры традиционных кулеров непрерывно улучшаются, тем не менее, в последнее время на компьютерном рынке появились и вскоре стали популярными такие специфические средства охлаждения электронных элементов как полупроводниковые холодильники Пельтье (хотя часто применяется слово кулер, но правильным термином в случае элементов Пельтье является именно холодильник).

Холодильники Пельтье, содержащие специальные полупроводниковые термоэлектрические модули, работа которых основана на эффекте Пельтье, открытом еще в 1834 г., являются чрезвычайно перспективными устройствами охлаждения. Подобные средства уже много лет успешно применяются в различных областях науки и техники.

В шестидесятых и семидесятых годах отечественной промышленностью предпринимались неоднократные попытки выпуска бытовых малогабаритных холодильников, работа которых была основана на эффекте Пельтье. Однако несовершенство существовавших технологий, низкие значения коэффициента полезного действия и высокие цены не позволили в те времена подобным устройствам покинуть научно-исследовательские лаборатории и испытательные стенды.

Но эффект Пельтье и термоэлектрические модули не остались уделом только ученых. В процессе совершенствования технологий многие негативные явления удалось существенно ослабить. В результате этих усилий были созданы высокоэффективные и надежные полупроводниковые модули.

В последние годы данные модули, работа которых основана на эффекте Пельтье, стали активно использовать для охлаждения разнообразных электронных компонентов компьютеров. Их, в частности, стали применять для охлаждения современных мощных процессоров, работа которых сопровождается высоким уровнем тепловыделения.

Благодаря своим уникальным тепловым и эксплуатационным свойствам устройства, созданные на основе термоэлектрических модулей — модулей Пельтье, позволяют достичь необходимого уровня охлаждения компьютерных элементов без особых технических трудностей и финансовых затрат. Как кулеры электронных компонентов, данные средства поддержки необходимых температурных режимов их эксплуатации являются чрезвычайно перспективными. Они компактны, удобны, надежны и обладают очень высокой эффективностью работы.

Особенно большой интерес полупроводниковые холодильники представляют в качестве средств, обеспечивающих интенсивное охлаждение в компьютерных системах, элементы которых, установлены и эксплуатируются в жестких форсированных режимах. Использование таких режимов — разгона (overclocking) часто обеспечивает значительный прирост производительности применяемых электронных компонентов, а, следовательно, как правило, и всей системы компьютера. Однако работа компьютерных компонентов в подобных режимах отличается значительным тепловыделением и нередко находится на пределе возможностей компьютерных архитектур, а также существующих и используемых микроэлектронных технологий. Такими компьютерными компонентами, работа которых сопровождается высоким тепловыделением, являются не только высокопроизводительные процессоры, но и элементы современных высокопроизводительных видеоадаптеров, а в некоторых случаях и микросхемы модулей памяти. Подобные мощные элементы требуют для своей корректной работы интенсивного охлаждения даже в штатных режимах и тем более в режимах разгона.

Модули Пельтье

В холодильниках Пельтье используется обычный, так называемый термоэлектрический холодильник, действие которого основано на эффекте Пельтье. Данный эффект назван в честь французского часовщика Пельтье (1785-1845 г.), сделавшего свое открытие более полутора столетий назад — в 1834 г.

Сам Пельтье не совсем понимал сущность открытого им явления. Истинный смысл явления был установлен несколькими годами позже в 1838 году Ленцем (1804-1865 г.).

В углубление на стыке двух стержней из висмута и сурьмы Ленц поместил каплю воды. При пропускании электрического тока в одном направлении капля воды замерзала. При пропускании тока в противоположном направлении образовавшийся лед таял. Тем самым было установлено, что при прохождении через контакт двух проводников электрического тока, в зависимости от направления последнего, помимо джоулева тепла выделяется или поглощается дополнительное тепло, которое получило название тепла Пельтье. Это явление получило название явления Пельтье (эффекта Пельтье). Таким образом, оно является обратным по отношению к явлению Зеебека.

Если в замкнутой цепи, состоящей из нескольких металлов или полупроводников, температуры в местах контактов металлов или полупроводников разные, то в цепи появляется электрический ток. Это явление термоэлектрического тока и было открыто в 1821 году немецким физиком Зеебеком (1770-1831 г.).

В отличие от тепла Джоуля-Ленца, которое пропорционально квадрату силы тока (Q=R·I·I·t), тепло Пельтье пропорционально первой степени силы тока и меняет знак при изменении направления последнего. Тепло Пельтье, как показали экспериментальные исследования, можно выразить формулой:

Qп = П ·q

где q — количество прошедшего электричества (q=I·t), П — так называемый коэффициент Пельтье, величина которого зависит от природы контактирующих материалов и от их температуры.

Тепло Пельтье Qп считается положительным, если оно выделяется, и отрицательным, если оно поглощается.

Рис. 1. Схема опыта для измерения тепла Пельтье, Cu — медь, Bi — висмут.

В представленной схеме опыта измерения тепла Пельтье при одинаковом сопротивлении проводов R (Cu+Bi), опущенных в калориметры, выделится одно и то же джоулево тепло в каждом калориметре, а именно по Q=R·I·I·t. Тепло Пельтье, напротив, в одном калориметре будет положительно, а в другом отрицательно. В соответствии с данной схемой можно измерить тепло Пельтье и вычислить значения коэффициентов Пельтье для разных пар проводников.

Необходимо отметить, что коэффициент Пельтье находится в существенной зависимости от температуры. Некоторые значения коэффициента Пельтье для различных пар металлов представлены в таблице.

Значения коэффициента Пельтье для различных пар металлов
Железо-константан Медь-никель Свинец-константан
T, К П, мВ T, К П, мВ T, К П, мВ
273 13,0 292 8,0 293 8,7
299 15,0 328 9,0 383 11,8
403 19,0 478 10,3 508 16,0
513 26,0 563 8,6 578 18,7
593 34,0 613 8,0 633 20,6
833 52,0 718 10,0 713 23,4

Коэффициент Пельтье, являющийся важной технической характеристикой материалов, как правило, не измеряется, а вычисляется через коэффициент Томсона:

П = a · T

где П — коэффициент Пельтье, a — коэффициент Томсона, T — абсолютная температура.

Открытие эффекта Пельтье оказало большое влияние на последующее развитие физики, а в дальнейшем и различных областей техники.

Итак, суть открытого эффекта заключается в следующем: при прохождении электрического тока через контакт двух проводников, сделанных из различных материалов, в зависимости от его направления, помимо джоулева тепла выделяется или поглощается дополнительное тепло, которое получило название тепла Пельтье. Степень проявления данного эффекта в значительной мере зависит от материалов выбранных проводников и используемых электрических режимов.

Классическая теория объясняет явление Пельтье тем, что электроны, переносимые током из одного метала в другой, ускоряются или замедляются под действием внутренней контактной разности потенциалов между металлами. В первом случае кинетическая энергия электронов увеличивается, а затем выделяется в виде тепла. Во втором случае кинетическая энергия электронов уменьшается, и эта убыль энергии пополняется за счет тепловых колебаний атомов второго проводника. В результате происходит охлаждение. Более полная теория учитывает изменение не потенциальной энергии при переносе электрона из одного металла в другой, а изменение полной энергии.

Наиболее сильно эффект Пельтье наблюдается в случае использования полупроводников p- и n-типа проводимости. В зависимости от направления электрического тока через контакт полупроводников разного типа — p-n- и n-p-переходов вследствие взаимодействия зарядов, представленных электронами (n) и дырками (p), и их рекомбинации энергия либо поглощается, либо выделяется. В результате данных взаимодействий и порожденных энергетических процессов тепло либо поглощается, либо выделяется. Использование полупроводников p- и n-типа проводимости в термоэлектрических холодильниках иллюстрирует рис. 2.


Рис. 2. Использование полупроводников p- и n-типа в термоэлектрических холодильниках.

Объединение большого количества пар полупроводников p- и n-типа позволяет создавать охлаждающие элементы — модули Пельтье сравнительно большой мощности. Структура полупроводникового термоэлектрического модуля Пельтье представлена на рис. 3.


Рис. 3. Структура модуля Пельтье

Модуль Пельтье, представляет собой термоэлектрический холодильник, состоящий из последовательно соединенных полупроводников p- и n-типа, образующих p-n- и n-p-переходы. Каждый из таких переходов имеет тепловой контакт с одним из двух радиаторов. В результате прохождения электрического тока определенной полярности образуется перепад температур между радиаторами модуля Пельтье: один радиатор работает как холодильник, другой радиатор нагревается и служит для отвода тепла. На рис. 4 представлен внешний вид типового модуля Пельтье.


Рис. 4. Внешний вид модуля Пельтье

Типичный модуль обеспечивает значительный температурный перепад, который составляет несколько десятков градусов. При соответствующем принудительном охлаждении нагревающегося радиатора второй радиатор — холодильник, позволяет достичь отрицательных значений температур. Для увеличения разности температур возможно каскадное включение термоэлектрических модулей Пельтье при обеспечении адекватного их охлаждения. Это позволяет сравнительно простыми средствами получить значительный перепад температур и обеспечить эффективное охлаждение защищаемых элементов. На рис. 5 представлен пример каскадного включения типовых модулей Пельтье.


Рис. 5. Пример каскадного включения модулей Пельтье

Устройства охлаждения на основе модулей Пельтье часто называют активными холодильниками Пельтье или просто кулерами Пельтье.

Использование модулей Пельтье в активных кулерах делает их существенно более эффективными по сравнению со стандартными типами кулеров на основе традиционных радиаторов и вентиляторов. Однако в процессе конструирования и использования кулеров с модулями Пельтье необходимо учитывать ряд специфических особенностей, вытекающих из конструкции модулей, их принципа работы, архитектуры современных аппаратных средств компьютеров и функциональных возможностей системного и прикладного программного обеспечения.

Большое значение играет мощность модуля Пельтье, которая, как правило, зависит от его размера. Модуль малой мощности не обеспечивает необходимый уровень охлаждения, что может привести к нарушению работоспособности защищаемого электронного элемента, например, процессора вследствие его перегрева. Однако применение модулей слишком большой мощности может вызвать понижение температуры охлаждающего радиатора до уровня конденсации влаги из воздуха, что опасно для электронных цепей. Это связано с тем, что вода, непрерывно получаемая в результате конденсации, может привести к коротким замыканиям в электронных цепях компьютера. Здесь уместно напомнить, что расстояние между токопроводящими проводниками на современных печатных платах нередко составляет доли миллиметров. Тем не менее, несмотря ни на что, именно мощные модули Пельтье в составе высокопроизводительных кулеров и соответствующие системы дополнительного охлаждения и вентиляции позволили в свое время фирмам KryoTech и AMD в совместных исследованиях разогнать процессоры AMD, созданные по традиционной технологии, до частоты, превышающей 1 ГГц, то есть увеличить их частоту работы почти в 2 раза по сравнению со штатным режимом их функционирования. И необходимо подчеркнуть, что данный уровень производительности достигнут в условиях обеспечения необходимой стабильности и надежности работы процессоров в форсированных режимах. Ну, а следствием такого экстремального разгона явился рекорд производительности среди процессоров архитектуры и системы команд 80х86. А фирма KryoTech неплохо заработала, предлагая на рынке свои установки охлаждения. Снабженные соответствующей электронной начинкой, они оказались востребованными в качестве платформ высокопроизводительных серверов и рабочих станций. А фирма AMD получила подтверждение высокого уровня своих изделий и богатый экспериментальный материал для дальнейшего совершенствования архитектуры своих процессоров. К слову сказать, аналогичные исследования были проведены и с процессорами Intel Celeron, Pentium II, Pentium III, в результате которых был получен тоже значительный прирост производительности.

Необходимо отметить, что модули Пельтье в процессе своей работы выделяют сравнительно большое количество тепла. По этой причине следует применять не только мощный вентилятор в составе кулера, но и меры для снижения температуры внутри корпуса компьютера для предупреждения перегрева остальных компонентов компьютера. Для этого целесообразно использовать дополнительные вентиляторы в конструктиве корпуса компьютера для обеспечения лучшего теплообмена с окружающей средой вне корпуса.

На рис. 6 представлен внешний вид активного кулера, в составе которого использован полупроводниковый модуль Пельтье.


Рис. 6. Внешний вид кулера с модулем Пельтье

Следует отметить, что системы охлаждения на основе модулей Пельтье используются не только в электронных системах, таких как компьютеры. Подобные модули применяются для охлаждения различных высокоточных устройств. Большое значение модули Пельтье имеют для науки. В первую очередь это касается экспериментальных исследований, выполняемых в физике, химии, биологии.

Информацию о модулях и холодильниках Пельтье, а также особенностях и результатах их применения можно найти на сайтах в Internet, например, по следующим адресам:

Особенности эксплуатации

Модули Пельтье, применяемые в составе средств охлаждения электронных элементов, отличаются сравнительно высокой надежностью, и в отличие от холодильников, созданных по традиционной технологии, не имеют движущихся частей. И, как это отмечалось выше, для увеличения эффективности своей работы они допускают каскадное использование, что позволяют довести температуру корпусов защищаемых электронных элементов до отрицательных значений даже при их значительной мощности рассеяния.

Однако кроме очевидных преимуществ, модули Пельтье обладает и рядом специфических свойств и характеристик, которые необходимо учитывать при их использовании в составе охлаждающих средств. Некоторые из них были уже отмечены, но для корректного применения модулей Пельтье требуют более детального рассмотрения. К важнейшим характеристикам относятся следующие особенности эксплуатации:

  • Модули Пельтье, выделяющие в процессе своей работы большое количество тепла, требуют наличия в составе кулера соответствующих радиаторов и вентиляторов, способных эффективно отводить избыточное тепло от охлаждающих модулей. Следует отметить, что термоэлектрические модули отличаются относительно низким коэффициентом полезного действия (кпд) и, выполняя функции теплового насоса, они сами являются мощными источниками тепла. Использование данных модулей в составе средств охлаждения электронных комплектующих компьютера вызывает значительный рост температуры внутри системного блока, что нередко требует дополнительных мер и средств для снижения температуры внутри корпуса компьютера. В противном случае повышенная температура внутри корпуса создает трудности для работы не только для защищаемых элементов и их систем охлаждения, но и остальным компонентам компьютера. Необходимо также подчеркнуть, что модули Пельтье являются сравнительно мощной дополнительной нагрузкой для блока питания. С учетом значения тока потребления модулей Пельтье величина мощности блока питания компьютера должна быть не менее 250 Вт. Все это приводит к целесообразности выбора материнских плат и корпусов конструктива ATX с блоками питания достаточной мощности. Использование данного конструктива облегчает для комплектующих компьютера организацию оптимальных теплового и электрического режимов. Следует отметить, что существуют холодильники Пельтье с собственным блоком питания.
  • Модуль Пельтье, в случае выхода его из строя, изолирует охлаждаемый элемент от радиатора кулера. Это приводит к очень быстрому нарушению теплового режима защищаемого элемента и скорому выходу его из строя от последующего перегрева.
  • Низкие температуры, возникающие в процессе работы холодильников Пельтье избыточной мощности, способствуют конденсации влаги из воздуха. Это представляет опасность для электронных компонентов, так как конденсат может вызвать короткие замыкания между элементами. Для исключения данной опасности целесообразно использовать холодильники Пельтье оптимальной мощности. Возникнет конденсация или нет, зависит от нескольких параметров. Важнейшими являются: температура окружающей среды (в данном случае температура воздуха внутри корпуса), температура охлаждаемого объекта и влажность воздуха. Чем теплее воздух внутри корпуса и чем больше влажность, тем вероятнее произойдет конденсация влаги и последующий выход из строя электронных элементов компьютера. Ниже представлена таблица, иллюстрирующая зависимость температуру конденсации влаги на охлаждаемом объекте в зависимости от влажности и температуры окружающего воздуха. Используя эту таблицу, можно легко установить, существует ли опасность конденсации влаги или нет. Например, если внешняя температура 25°C, а влажность 65%, то конденсация влаги на охлаждаемом объекте происходит при температуре его поверхности ниже 18°C.

Температура конденсации влаги

Влажность, %
Температура
окружающей среды, °C
30 35 40 45 50 55 60 65 70
30 11 13 15 17 18 20 21 23 24
29 10 12 14 16 18 19 20 22 23
28 9 11 13 15 17 18 20 21 22
27 8 10 12 14 16 17 19 20 21
26 7 9 11 13 15 16 18 19 20
25 6 9 11 12 14 15 17 18 19
24 5 8 10 11 13 14 16 17 18
23 5 7 9 10 12 14 15 16 17
22 4 6 8 10 11 13 14 15 16
21 3 5 7 9 10 12 13 14 15
20 2 4 6 8 9 11 12 13 14

Кроме указанных особенностей, необходимо учитывать и ряд специфических обстоятельств, связанных с использованием термоэлектрических модулей Пельтье в составе кулеров, применяемых для охлаждения высокопроизводительных центральных процессоров мощных компьютеров.

Архитектура современных процессоров и некоторые системные программы предусматривают изменение энергопотребления в зависимости от загрузки процессоров. Это позволяет оптимизировать их энергопотребление. Кстати, это предусмотрено и стандартами энергосбережения, поддерживаемыми некоторыми функциями, встроенными в аппаратно-программное обеспечение современных компьютеров. В обычных условиях оптимизация работы процессора и его энергопотребления благотворно сказывается как на тепловом режиме самого процессора, так и общем тепловом балансе. Однако следует отметить, что режимы с периодическим изменением энергопотребления могут плохо сочетаться со средствами охлаждения процессоров, использующих модули Пельтье. Это связано с тем, что существующие холодильники Пельтье, как правило, рассчитаны на непрерывную работу. В связи с этим, простейшие холодильники Пельтье, не обладающие средствами контроля, не рекомендуется использовать вместе с охлаждающими программами, такими как, например, CpuIdle, а также с операционными системами Windows NT/2000 или Linux.

В случае перехода процессора в режим пониженного энергопотребления и соответственно тепловыделения возможно значительное снижение температуры корпуса и кристалла процессора. Переохлаждение ядра процессора может вызвать в некоторых случаях временное прекращение его работоспособности, и как результат, стойкое зависание компьютера. Необходимо напомнить, что в соответствии с документацией фирмы Intel минимальная температура, при которой гарантируется корректная работа серийных процессоров Pentium II и Pentium III, обычно составляет +5 °C, хотя, как показывает практика, они прекрасно работают и при более низких температурах.

Некоторые проблемы могут возникнуть и в результате работы ряда встроенных функций, например, тех, которые осуществляют управление вентиляторами кулеров. В частности, режимы управления энергопотреблением процессора в некоторых компьютерных системах предусматривают изменение скорости вращения охлаждающих вентиляторов через встроенные аппаратные средства материнской платы. В обычных условиях это значительно улучшает тепловой режим процессора компьютера. Однако в случае использования простейших холодильников Пельтье уменьшение скорости вращения может привести к ухудшению теплового режима с фатальным результатом для процессора уже вследствие его перегрева работающим модулем Пельтье, который кроме выполнения функций теплового насоса, является мощным источником дополнительного тепла.

Необходимо отметить, что, как и в случае центральных процессоров компьютеров, холодильники Пельтье могут быть хорошей альтернативой традиционным средствам охлаждения видеочипсетов, используемых в составе современных высокопроизводительных видеоадаптеров. Работа таких видеочипсетов сопровождается значительным тепловыделением и обычно не подвержена резким изменениям режимов их функционирования.

Для того чтобы исключить проблемы с режимами изменяемого энергопотребления, вызывающих конденсацию влаги из воздуха и возможное переохлаждение, а в некоторых случаях даже перегрев защищаемых элементов, таких как процессоры компьютеров, следует отказаться от использования подобных режимов и ряда встроенных функций. Однако как альтернативу можно использовать системы охлаждения, предусматривающие интеллектуальные средства управления холодильниками Пельтье. Такие средства могут контролировать не только работу вентиляторов, но и изменять режимы работы самих термоэлектрических модулей, используемых в составе активных кулеров.

Появились сообщения об экспериментах по встраиванию миниатюрных модулей Пельтье непосредственно в микросхемы процессоров для охлаждения их наиболее критичных структур. Такое решение способствует лучшему охлаждению за счет снижения теплового сопротивления и позволяет значительно повысить рабочую частоту и производительность процессоров.

Работы в направлении совершенствования систем обеспечения оптимальных температурных режимов электронных элементов ведутся многими исследовательскими лабораториями. И системы охлаждения, предусматривающие использование термоэлектрических модулей Пельтье, считаются чрезвычайно перспективными.

Примеры холодильников Пельтье

Сравнительно недавно на компьютерном рынке появились модули Пельтье отечественного производства. Это простые, надежные и сравнительно дешевые ($7-$15) устройства. Как правило, охлаждающий вентилятор не входит в состав. Тем не менее, подобные модули позволяют не только познакомиться с перспективными средствами охлаждения, но и использовать их по прямому назначению в системах защиты компьютерных компонентов. Вот краткие параметры одного из образцов.

Размер модуля (Рис.7) — 40×40 мм, максимальный ток — 6 А, максимальное напряжение — 15 В, потребляемая мощность — до 85 Вт, перепад температур — более 60 °C. При обеспечении мощного вентилятора модуль способен защитить процессор при рассеиваемой им мощности до 40 Вт.


Рис. 7. Внешний вид холодильника PAP2X3B

На рынке представлены как менее, так и более мощные варианты отечественных модулей Пельтье.

Спектр зарубежных устройств значительно шире. Ниже приведены примеры холодильников, в конструкции которых использованы термоэлектрические модули Пельтье.

Активные холодильники Пельтье фирмы Computernerd

Название Производитель / поставщик Параметры вентилятора Процессор
PAX56B Computernerd ball-bearing Pentium/MMX до 200 МГц, 25 Вт
PA6EXB Computernerd dual ball-bearing, тахометр Pentium MMX до 40 Вт
DT-P54A DesTech Solutions dual ball bearing Pentium
AC-P2 AOC Cooler ball bearing Pentium II
PAP2X3B Computernerd 3 ball bearing Pentium II
STEP-UP-53X2 Step Thermodynamics 2 ball bearing Pentium II, Celeron
PAP2CX3B-10
BCool PC-Peltier
Computernerd 3 ball-bearing, тахометр Pentium II, Celeron
PAP2CX3B-25
BCool-ER PC-Peltier
Computernerd 3 ball-bearing, тахометр Pentium II, Celeron
PAP2CX3B-10S BCool-EST PC-Peltier Computernerd 3 ball-bearing, тахометр Pentium II, Celeron

Холодильник PAX56B разработан для охлаждения процессоров Pentium и Pentium-MMX фирм Intel, Cyrix и AMD, работающих на частотах до 200 МГц. Термоэлектрический модуль размером 30×30 мм позволяет холодильнику поддерживать температуру процессора ниже 63 °C при рассеиваемой им мощности 25 Вт и внешней температуре равной 25 °C. В связи с тем, что большинство процессоров рассеивают меньшую мощность, данный холодильник позволяет поддерживать температуру процессора гораздо ниже, чем многие альтернативные кулеры на основе радиаторов и вентиляторов. Питание модуля Пельтье, входящего в состав холодильника PAX56B, осуществляется от источника 5 В, способного обеспечить ток 1,5 А (максимум). Вентилятор данного холодильника требует напряжение 12 В и ток 0,1 А (максимум). Параметры вентилятора холодильника PAX56B: ball-bearing, 47,5 мм, 65000 часов, 26 дБ. Общий размер данного холодильника составляет 25×25×28,7 мм. Ориентировочная цена холодильника PAX56B равна $35. Указанная цена приведена в соответствии с прайс-листом фирмы на середину 2000 г.

Холодильник PA6EXB разработан для охлаждения более мощных процессоров Pentium-MMX, рассеивающих мощность до 40 Вт. Этот холодильник подходит для всех процессоров фирм Intel, Cyrix и AMD, подключаемых через Socket 5 или Socket 7. Термоэлектрический модуль Пельтье, входящий в состав холодильника PA6EXB имеет размер 40×40 мм и потребляет максимум ток 8 А (обычно 3 А) при напряжении 5 В с подключением через стандартный разъем питания компьютера. Общий размер холодильника PA6EXB составляет 60×60×52,5 мм. При установке данного холодильника для хорошего теплообмена радиатора с окружающей средой необходимо обеспечить открытое пространство вокруг холодильника как минимум 10 мм сверху и 2,5 мм по бокам. Холодильник PA6EXB обеспечивает температуру процессора 62,7 °C при рассеиваемой им мощности 40 Вт и внешней температуре 45 °C. Учитывая принцип работы термоэлектрического модуля, входящего в состав данного холодильника, во избежание конденсации влаги и короткого замыкания необходимо избегать использования программ, которые переводят процессор в спящий режим на длительное время. Ориентировочная цена такого холодильника составляет $65. Указанная цена приведена в соответствии с прайс-листом фирмы на середину 2000 г.

Холодильник DT-P54A (также известен под названием PA5B фирмы Computernerd) разработан для процессоров Pentium. Однако некоторые фирмы, предлагающие эти холодильники на рынке, рекомендуют его и пользователям Cyrix/IBM 6x86 и AMD K6. Радиатор, входящий в состав холодильника, достаточно мал. Его размеры 29×29 мм. В холодильник встроен термодатчик, который при необходимости оповестит о перегреве. Он также контролирует элемент Пельтье. В комплект входит внешнее контролирующее устройство. Оно выполняет функции контроля за напряжением и самой работой элемента Пельтье, работой вентилятора, а также температурой процессора. Устройство выдаст сигнал тревоги, если элемент Пельтье или вентилятор вышли из строя, если вентилятор вращается со скоростью меньшей, чем на 70% от необходимого значения (4500 RPM) или же температура процессора поднялась выше 145°F (63°C). Если температура процессора поднялась выше 100°F (38°C), то элемент Пельтье автоматически включается, в противном случае он находится в режиме отключения. Последняя функция ликвидирует проблемы, связанные с конденсацией влаги. К сожалению, сам элемент приклеен к радиатору настолько сильно, что его невозможно отделить, не разрушив его конструкцию. Это лишает возможности установить его на другой, более мощный радиатор. Что касается вентилятора, то его конструкция характеризуется высоким уровнем надежности и он обладает высокими параметрами: напряжение питания — 12 В, скорость вращения — 4500 RPM, скорость подачи воздуха — 6.0 CFM, потребляемая мощность — 1 Вт, шумовые характеристики — 30 дБ. Этот холодильник достаточно производителен и полезен при разгоне. Однако в некоторых случаях разгона процессора следует воспользоваться просто большим радиатором и хорошим кулером. Цена этого холодильника составляет от $39 до $49. Указанная цена приведена в соответствии с прайс-листом нескольких фирм на середину 2000 г.

Холодильник AC-P2 разработан для процессоров типа Pentium II. В комплект входит 60 мм кулер, радиатор и элемент Пельтье размером 40 мм. Плохо подходит к процессорам Pentium II 400 МГц и выше, так как практически не охлаждаются чипы памяти SRAM. Ориентировочная цена на середину 2000 года — $59.

Холодильник PAP2X3B (рис. 8) аналогичен AOC AC-P2. В него добавлены два 60 мм кулера. Проблемы с охлаждением памяти SRAM остались нерешенными. Стоит отметить, что холодильник не рекомендуется использовать вместе с охлаждающими программами, такими как, например, CpuIdle, а также под операционными системами Windows NT или Linux, так как вероятна конденсация влаги на процессоре. Ориентировочная цена на середину 2000 года — $79.


Рис. 8. Внешний вид холодильника PAP2X3B

Холодильник STEP-UP-53X2 оснащен двумя вентиляторами, прокачивающими большое количество воздуха через радиатор. Ориентировочная цена на середину 2000 года — $79 (Pentium II), $69 (Celeron).

Холодильники серии Bcool от Computernerd (PAP2CX3B-10 BCool PC-Peltier, PAP2CX3B-25 BCool-ER PC-Peltier, PAP2CX3B-10S, BCool-EST PC-Peltier) разработаны для процессоров Pentium II и Celeron и имеют похожие характеристики, которые представлены в следующей таблице.

Холодильники серии BCool

Item PAP2CX3B-10
BCool PC-Peltier
PAP2CX3B-25
BCool-ER PC-Peltier
PAP2CX3B-10S
BCool-EST PC-Peltier
Рекомендуемые процессоры Pentium II and Celeron
Количество вентиляторов 3
Тип центрального вентилятора Ball-Bearing, тахометр (12 В, 120 мА)
Размер центрального вентилятора 60x60x10 мм
Тип внешнего вентилятора Ball-Bearing Ball-Bearing, тахометр Ball-Bearing, термистр
Размер внешнего вентилятора 60x60x10 мм 60x60x25 мм
Напряжение, ток 12 В, 90 мА 12 В, 130 мА 12 В, 80-225 мА
Общая площадь охвата вентиляторами 84.9 см 2
Общий ток для вентиляторов (мощность) 300 мА
(3.6 Вт)
380 мА
(4.56 Вт)
280-570 мА
(3.36-6.84 Вт)
Количество штырьков на радиаторе (центр) 63 длинных и 72 коротких
Количество штырьков на радиаторе (с каждого края) 45 длинных и 18 коротких
Общее количество штырьков на радиаторе 153 длинных и 108 коротких
Размеры радиатора (центр) 57x59x27 мм (включая термоэлектрической модуль)
Размеры радиатора (с каждого края) 41x59x32 мм
Общие размеры радиатора 145x59x38 мм (включая термоэлектрической модуль)
Общие размеры холодильника 145x60x50 мм 145x60x65 мм
Вес холодильника 357 грамм 416 грамм 422 грамм
Гарантия 5 лет
Ориентировочная цена (2000 г.) $74.95 $79.95 $84.95

Следует отметить, что группа холодильников BCool включет в себя также устройства, которые имеют похожие характеристики, но в которых отсутствуют элементы Пельтье. Такие холодильники, естественно, дешевле, но и менее эффективны как средства охлаждения компьютерных комплектующих.

При подготовке статьи были использованы материалы книги "PC: настройка, оптимизация и разгон". 2-е изд., перераб. и доп., — СПб.: BHV — Петербург. 2000. — 336 с.

Элементом Пельтье называют термопару, иначе говоря, устройство изменяющее температуру и работающее в соответствии с одноимённым принципом Пельтье, то есть, демонстрируя разность температур, возникающую с момента подачи электроэнергии. В англоязычных источниках фигурирует в роли термоэлектрического охладителя. Обратный данному эффекту носит название эффекта Зеебека.

Принцип работы устройства

Элемент Пельтье функционирует благодаря взаимодействию одного токопроводящего материала с другим, отличным по энергетическому уровню электронов в проводящей области. Прохождение по такому каналу связи наделяет электрон большим энергетическим запасом, что после позволяет ему перейти в проводящую область с более высоким энергетическим уровнем. Поглощение этой энергии приводит к понижению температуры в точке соединения проводников. Когда же происходит обратное движение тока, контакт нагревает, что находит выражение в виде стандартного теплового эффекта.

При условии, что по одной стороне подключён теплоотвод, в момент эксплуатации радиаторной системы вторая сторона даёт сильное охлаждения (до десятков градусов ниже температурного уровня окружающей среды). Между величиной тока и степенью охлаждения наблюдается прямая зависимость. При смене полярности также меняются положениями стороны нагрева и охлаждения.

Когда элемент Пельтье взаимодействует с деталями, выполненными из металла, то оказываемый им эффект уменьшается во много раз, и температурный контраст становится мало заметен под действием разнообразных явлений связанных с теплопроводностью цепи. По этой причине практическое применение подразумевает использование сразу двух полупроводников.

Сочетать термопары можно в любых количествах в пределах сотни, что делает возможным создание элемента Пельтье любой холодильной мощности.

Термоэлектрический модуль

Особенно явно эффект Пельтье можно наблюдать при использовании p- и n- полупроводников. В соответствии с направлением электротока при переходе через p-n-соединения происходит поглощение, либо выделение энергии.

Именно такая конструкция применяется в ТЭМ (термоэлектрическом модуле). Единичный элемент термоэлектрического модуля – это , конструкция которой представляет собой объединение p- и n- проводника. Если последовательно соединить несколько подобных элементов, то поглощение теплоты будет происходить на n-p-контакте, а выделение на p-n-контакте. В результате возникает уже описанная ранее ситуация с разностью температур. Согласно общепринятому принципу горячей является та сторона, к которой подведены провода и на схеме она всегда расположена внизу.

Рис.1: Термоэлектрический модуль Пельтье

В ТЭМ термопары фиксируются между парой пластин из керамических материалов. Каждая из веток спаивается с медными проводящими площадками (шинками), которые в свою очередь скрепляются с теплопроводящим материалом, например, оксидом алюминия.

Определять уровень рабочего напряжения модуля следует, исходя из количества составных элементов. Наиболее распространённым вариантом является 127-парные модульные конструкции с наибольшим уровнем напряжения в 16 Вольт. Но для их работы обычно достаточно 75% от этого значения. Мало того именно эта цифра является наиболее подходящей, поскольку отвечает и требованиям к рабочим условиям, и является достаточно экономичной. При повышении напряжения мощность почти не увеличится, а вот энергопотребление ощутимо возрастёт.

Применение на практике

На сегодняшний день применение элемента Пельте особенно актуально в устройствах следующих типов:

  • Холодильники;
  • Кондиционеры;
  • Автомобильные охладители;
  • Кулеры для воды;
  • Видеокарты для персонального компьютера.

В целом, можно сказать, что элемент Пельтье стал неотъемлемой частью разнообразных холодильных и кондиционирующих систем. Использование этого устройства является отличным подходом к решению проблемы перегрева оборудования. В настоящее время элемент Пельтье также может быть использован для охлаждения акустической и звуковой системы, поскольку его работа является совершенно бесшумной и идеально подходит для таких целей.

Есть несколько качеств элемента Пельтье, которые пользуются большим спросом:

  • Они обеспечивают достаточно мощную теплоотдачу;
  • Имеют весьма скромные размеры, что позволяет использовать их практически в любых устройствах;
  • Способны к сохранению одного и того же температурного режима на протяжении продолжительного срока (благодаря радиаторам);
  • Отличаются изрядной долговечность, поскольку укомплектованы из ряда цельных недвижимых компонентов.

Самая простая составляющая элемента выглядит как пара медных проводников, к которым подключены контакты, соединительные провода, оснащённые изолирующим элементом (для его изготовления используется нержавеющая сталь или керамика).

Как самостоятельно изготовить элемент Пельтье

Простота конструкции этого устройства располагает к тому, чтобы изготовить его самостоятельно. Тем более, что сфера его практического применения практически не ограничена: холодильники, кондиционеры и другая техника.

Предварительно следует заготовить пару пластин из металла, а также понадобится проводка с контактами. Прежде всего, запаситесь проводниками, которые будут установлены рядом с основанием устройства. Для этих целей лучше всего подойдут PP-проводники.

Далее, не забудьте, что на выходе должны быть установлены полупроводники, которые будут подавать тепло к верхней пластине. Для монтажа элемента потребуется паяльник. На финальном этапе понадобится подключить пару проводов. Один локализуется около основания и надёжно крепится рядом с крайним проводником. Значимо, чтобы не было никаких соприкосновений с пластиной.

Место крепления второго проводника располагается рядом с верхней частью и закрепляется аналогичным образом – у крайнего проводника.

Для проверки элемента на предмет работоспособности нужно будет воспользоваться тестером. Прибор подсоединяется к проводам и производится замер вольтажа. Стандартный показатель отклонения напряжения достигает примерно 23 Вольт.

Мощность элемента Пельте находится в прямой зависимости от его габаритов, это следует учитывать при самостоятельной сборке или монтаже. Установка недостаточно мощного элемента не предотвратит поломку техники, а лишь отсрочит её. В то же время избыточная мощность вызывает падение уровня температуры до критического уровня, когда влага, находящаяся в воздухе может начать конденсировать и оседать на поверхности устройств, что особенно опасно для электронных приборов.

Помимо этого, другая сторона модуля является источником достаточно большого количества тепла, поэтому для обеспечения его безопасной работы требуется вентилятор довольно большой мощности.

Как изготовить генератор на основе элемента Пельтье?

Генераторы на основе элемента Пельтье особенно интересуют людей, которые ввиду достаточно продолжительной отрезанности от цивилизации нуждаются в простом и доступном источнике энергии. Также они широко применяются при критическом перегреве деталей персонального компьютера.

Рис.2: Генератор на основе элемента Пельтье.

Элементы Пельтье имеют достаточно интересный принцип действия, но помимо этого обладают одной любопытной особенностью: если к ним прилагается разность температур, то они продуцируют электричество. Один из вариантов генератора на базе этого устройства предполагает следующую конструкцию:

По двум трубкам (одна для входа, другая для выхода) движется пар, который направляется в полость теплообменника, сконструированный из пластины (материал: алюминий), имеющей толщину 1 см.

К каждому отверстию теплообменника подведено соединение с одним каналом. Габариты теплообменника точно дублируют габариты элементов Пельтье. Два элемента фиксируются на двух сторонах теплообменника с помощью четырёх винтов (по 2 на каждую сторону). В результате, благодаря отверстиям и канальцам теплообменника формируется полноценная система сообщающихся отделов, через которые проходит пар. Двигаясь вперёд, пар входит в камеру по одной трубке и выходит через другую, двигаясь к следующей камере. Транслируемое паром тепло достаётся элементам Пельтье, когда пар непосредственно соприкасается с их поверхностью, а также с материалом теплообменника.

Чтобы вплотную прижать элементы к корпусу теплообменника, а также для организации отвода тепловой энергии на «холодную» сторону применяются пластины из алюминия на 0,5 см в толщину. На последнем этапе вся конструкция герметизируется силиконовыми герметиками.

После этого через трубки пускают пар, а конструкция погружается в холодную воду. Вся система целиком начинает работать. Электрический ток будет образовываться до тех пор, пока разница между температурой «горячей» и «холодной» сторон не сократится до минимума.

Есть и более элементарный метод.

Элемент Пельтье выводами подсоединённый к зарядному телефонному кабелю закрепляется на алюминиевом радиаторе (который будет контактировать с «холодной» стороной) с помощь герметика. Сверху на устройство ставится любой горячий предмет, например, кружка с горячим чаем. Через пару секунд телефон можно ставить на зарядку. Зарядка будет продолжаться, пока чай не остынет.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.



Статьи по теме