Основная функция сетевых протоколов tcp ip. Основы сетей и протоколов интернет

Материал из Национальной библиотеки им. Н. Э. Баумана
Последнее изменение этой страницы: 23:49, 28 января 2017.

NUMBEREDHEADINGS__

Стек протоколов ТСР/IP

IP-сеть

IP-сеть (какой является Интернет) отличается от глобальных сетей тем, что является составной сетью из подсетей, число которых измеряется тысячами. Для Интернета характерно использование стека протоколов не эталонной модели OSI, а эталонной модели TCP/IP . На рис. 1 представлен стек протоколов TCP/IP и его соответствие уровням модели OSI. Отличительной особенностью TCP/IP является также то, что IP-пакеты могут передаваться с использованием различных технологий составных сетей, в том числе посредством уже рассмотренных глобальных сетей Х.25, FR и ATM, которые являются самостоятельными со своими протоколами, адресацией и др. Другой особенностью является то, что эталонная модель TCP/IP в отличие от эталонной модели OSI была разработана под конкретную составную сеть (интерсеть или internet). Подсети, составляющую эту составную сеть, соединяются между собой маршрутизаторами. Такими подсетями могут быть как локальные, так и глобальные сети различных технологий.

Прикладной уровень стека TCP/IP (уровень 4) соответствует трём верхним уровням модели OSI. К протоколам прикладного уровня относятся протокол переноса файлов (FTP); протокол электронной почты (SMTP); протокол, используемый для создания страниц во всемирной паутине WWW (HTTP) - основа для доступа к связанным между собой документам; протокол преобразования (DNS) текстовых имен в сетевые IP-адреса, простой протокол сетевого управления (SNMP), протоколы соответственно сигнализации и передачи данных (SIP, RTP/RTCP) в IP-телефонии или речь поверх IP (VoIP-Voice over IP) и др. К протоколам прикладного уровня относятся также протоколы информационной безопасности Kerberos, PGP, SET и др.

Рис. 1. Стек протоколов TCP/IP

Транспортный уровень стека TCP/IP

Транспортный уровень стека TCP/IP (уровень 3) обеспечивает передачу данных между прикладными процессами. Транспортный уровень включает два протокола TCP и UDP. Протокол управления передачей TCP (Transmission Control Protocol) является надёжным протоколом с установлением соединения, позволяющим управлять потоком, т.е. без ошибок доставлять байтовый поток с одной машины на любую другую машину составной сети. Для того чтобы обеспечить надёжную доставку данных, протокол TCP предусматривает установление логического соединения. Это позволяет ему нумеровать пакеты, подтверждать их прием квитанциями, в случае потери организовывать повторные передачи, распознавать и уничтожать дубликаты, доставлять прикладному уровню в том порядке, в котором они были отправлены. Пакеты, поступающие на транспортный уровень, организуются в виде множества очередей к точкам входа прикладных процессов. В терминологии TCP/IP такие очереди, однозначно определяющие приложение в пределах хоста, называется портами. За портами каждого стандартного приложения определён номер например, порт TCP № 21 - за протоколом передачи файла FTP (File Transport Protocol). Номер порта в совокупности с номером сети и номером конечного узла имеет название сокет (socket). Каждое логическое соединение идентифицируется парой сокетов взаимодействующих процессов. Второй протокол транспортного уровня -протокол пользователей дейтаграмм UDP (User Data Protocol) является простейшим дейтаграммным протоколом (т.е. без установления соединения). К протоколу транспортного уровня относится протокол информационной безопасности SSL/TLS. Протоколы прикладного и транспортного уровней стека уровней TCP/IP устанавливаются на оконечных станциях (хостах) сети.

Межсетевой уровень стека TCP/IP

Межсетевой уровень стека TCP/IP (уровень 2) , называемый также сетевым уровнем (по модели OSI), является стержнем всей архитектуры TCP/IP. Именно этот уровень, функции которого соответствуют сетевому уровню модели OSI, обеспечивает перенос пакетов данных в пределах всей составной сети. Протоколы межсетевого уровня поддерживают интерфейсы с вышележащим транспортным уровнем, получая от него запросы на передачу данных по составной сети. Основным протоколом межсетевого уровня является межсетевой протокол IP (Internet Protocol). Он обеспечивает продвижение пакета между подсетями - от одного пограничного маршрутизатора до другого, до тех пор, пока пакет не попадёт в сеть назначения. Протокол IP так же, как и протоколы функций коммутации глобальных сетей связи (FR, ATM и др.), устанавливается не только на оконечных пунктах (хостах), но и на всех маршрутизаторах сети. Маршрутизатор представляет собой процессор, который связывает между собой две сети (подсети). Протокол межсетевого уровня работает в режиме без установления соединения (дейтаграммный режим), в соответствии с которым он не отвечает за доставку пакета до узла назначения. При потере пакета в сети протокол IP не пытается восстановить его.

В заголовке IP-пакета содержится IP-адрес отправителя и получателя - по 4 байта каждый. К межсетевому уровню относятся также протоколы, выполняющие функции составления и коррекции таблиц маршрутизации RIP (Routing Internet Protocol), OSPF (Open Shortest Path First), протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). К протоколу сетевого уровня относится протокол информационной безопасности IPSec. Уровень сетевого доступа стека TCP/IP (уровень 1) отвечает за организацию интерфейса с частными технологиями подсетей составной сети. Перемещение пакета можно рассматривать как последовательность «прыжков» от одного маршрутизатора к другому. На очередном маршрутизаторе на сетевом уровне определяется сетевой адрес следующего по маршруту маршрутизатора. Чтобы передать пакет IP этому маршрутизатору, надо перенести его через некоторую подсеть. Для этого необходимо использовать транспортные средства этой подсети. Задача уровня сетевого доступа сводится к инкапсуляции (вложению) пакета в блок данных этой промежуточной сети и в преобразовании сетевых адресов граничных маршрутизаторов этой подсети в новый тип адреса, принятой в технологии промежуточной сети.

Пример переноса данных в IP-сети

На примере IP-сети (рис. 2) покажем перенос данных оконечной станции А локальной вычислительной сети (подсети) Ethernet в оконечную станцию В сети (подсети) АТМ. Как видно из рисунка в эту составную сеть еще входит сеть (подсеть) Frame Relay. В основу приведенного упрощенного описания положен пример межсетевого взаимодействия сетей Ethernet и АТМ, приведенный в работе . Дополнительно в эту составную сеть введена сеть (подсеть) Frame Relay. Принцип маршрутизации и краткое описание протоколов маршрутизации в сети Интернет приведены в следующей главе. Для того, чтобы технология TCP/IP могла решать задачу объединения сетей, ей необходима собственная глобальная система адресации, не зависящая от способов адресации узлов в отдельных подсетях. Таким адресом является IP-адрес, состоящий из адреса подсети (префикса) и адреса оконечного устройства (хоста). Приведем пример адресации подсети и хоста. IP-адрес 200.15.45.126/25 означает, что 25 старших бит из выделенных 4-х байт под адресацию являются адресом подсети, а оставшиеся 7 бит означают адрес хоста в этой сети.

Как видно из предыдущих глав, глобальные сети Frame Relay и АТМ имеют различные системы нумерации, которые отличаются от системы нумерации локальной вычислительной сети (ЛВС) технологии Ethernet. Каждый компьютер Ethernet имеет уникальный физический адрес, состоящий из 48 бит. Этот адрес называется МАС-адресом и относится к канальному уровню - управлению доступом к среде MAC (Media Access Control). Для организации межсетевого взаимодействия подсетей различной технологии и адресации используются маршрутизаторы, включающие IP-пакеты. В состав этих пакетов входят глобальные IP-адреса. Каждый интерфейс маршрутизатора IP-сети и оконечного устройства включает два адреса – локальный адрес оконечного устройства подсети и IP-адрес.

Рис. 2. Пример взаимодействия двух устройств

Рассмотрим продвижение IP-пакета в сети (рис. 2).


Протоколы TCP/IP

Ниже приводится краткое описание протокола прикладного уровня SNMP и протокола транспортного уровня TCP архитектуры TCP/IP.

Протокол прикладного уровня SNMP

Большие сети не могут быть настроены и управляться вручную в плане изменения конфигурации сети, устранения неисправности в сети, сбора параметров о качестве обслуживания. Если в сети используется оборудование разных производителей, необходимость таких средств становится особенно необходимой. В связи с этим были разработаны стандарты сетевого управления. Одним из наиболее широко используемых является простой протокол управления сетью SNMP (Simple Network Management Protocol) . Приведем краткие сведения об архитектуре сетевого управления. Система сетевого управления включает инструментальные средства для решения задач управления. При этом необходимо использование уже имеющегося оборудования путем внедрения в него дополнительных аппаратных и программных средств для управления сетью. Это программное обеспечение размещается в хостах, коммуникационных процессорах и других устройствах сети. Модель сетевого управления, используемая для SNMP состоит из следующих элементов:

  • станция управления, выполняющая роль интерфейса между сетевым администратором и системой сетевого управления. Станция управления позволяет осуществить мониторинг сети и управление сетью. В этой станции имеется база данных с информацией, полученной из информационных баз всех управляемых объектов сети;
  • агент управления (хосты, коммутаторы и др.), которые отвечают на запросы от станции управления. Агент обеспечивает информацией станцию и без запроса;
  • агент поддерживает базу данных, именуемую MIB (база управляющей информации, Management Information Base), в которой записаны конфигурация, характеристики и состояние устройств.

Станция управления и агенты взаимодействуют по протоколу SNMP. Так как управление сетью задача многоцелевая, приведем некоторые возможности использования протокола SNMP в сети Frame Relay . Агент поддерживает базу данных, именуемую MIB (база управляющей информации, Management Information Base), в которой записаны конфигурация, характеристики и состояние устройств. Форум Frame Relay стандартизировал MIB для устройств Frame Relay. В большинстве служб Frame Relay провайдер собирает информации от агентов SNMP в каждом коммутаторе FR и записывает ее в центральную базу MIB для общего пользования. Тем самым пользователю предоставляется единый источник статистической информации обо всех соединениях виртуальных каналов сети. Это дает возможность отследить свои потоки данных в сети провайдера от коммутатора к коммутатору. Можно использовать SNMP для сбора статистики и аварийных сообщений от собственного оборудования, подключенного к сети FR. Для этого приходится работать с множеством MIB. Для сбора данных на основе SNMP можно использовать виртуальный канал FR.

SNMP может управлять конфигурацией сети. Для сети FR это касается как физической, так и логической конфигурации сети, включая установление адресации, определение DLCI, назначение полосы пропускания для PVC. SNMP может управлять устранением неисправностей в сети при получении системой управления аварийных сообщений от агента сетевого устройства.

Обеспечение информационной безопасности протокола SNMP

В документе RFC 2574 определяется модель USM (User Security Model – модель защиты пользователя) при использовании протокола SNMP. USM разрабатывалась с целью защиты от угроз следующих типов.

  1. Модификация информации. По пути следования сообщения, сгенерированного авторизованным объектом, некоторый другой объект может изменить это сообщение, чтобы выполнить несанкционированные операции управления (например, установив соответствующие значения объекта управления). Суть угрозы заключается в том, что несанкционированный объект может изменить любые параметры управления, включая параметры конфигурации, выполняемых действий и контроля.
  2. Имитация. Объект может пытаться выполнить не разрешенные для него операции управления, отождествляя данный объект с некоторым авторизованным объектом.
  3. Модификация потока сообщений. Протокол SNMP предназначен для работы над транспортным протоколом, не предполагающим установку соединений. Существует угроза переупорядочения, задержки или воспроизведения (дублирования) сообщений SNMP для несанкционированного управления. Например, можно скопировать и впоследствии воспроизвести сообщение, вызывающее перезапуск устройства.
  4. Разглашение информации. Наблюдая за потоком обмена данными между администратором и агентом, объект может выяснить значения управляемых объектов и распознать подлежащие регистрации события. Например, наблюдение за набором команд, изменяющих пароли, может позволить атакующему узнать новые пароли.

Протокол транспортного уровня TCP

Протокол транспортного уровня TCP выполняет функцию управления потоками между оконечными пунктами, так как уровень IP не гарантирует правильной доставки дейтаграмм. Дейтаграммы с уровня IP могут прибывать в неправильном порядке. Восстанавливает сообщения из таких дейтаграмм протокол TCP, обеспечивая этим надежный режим установленного соединения с низкой вероятностью потери пакета. Механизм управления потоками, используемый ТСP, отличается от механизма восстановления правильной последовательности кадров в Х.25 и называется схемой кредитов. В этой схеме считается, что каждый передаваемый байт данных имеет порядковый номер. Границы между сообщениями не сохраняются. Например, если отправляющий прикладной процесс записывает в ТСP-поток четыре 512-байтовые порции данных, эти данные могут быть доставлены получающему процессу в виде четырех 512-байтовых порций, либо двух 1024-байтовых порций, либо одной 2048-байтовой порции. Каждая протокольная единица PDU TCP называется сегментом TCP и включает в заголовок сегмента порт источника данных и порт получателя. Значения портов идентифицируют соответствующих пользователей (приложения) двух объектов TCP.

Логическая связь относится именно к данной паре значения портов. В процессе связи каждый объект отслеживает сегменты TCP, получаемые от другой стороны или отправленные другой стороне, для того, чтобы регулировать поток сегментов и восстанавливать утерянные или поврежденные сегменты. Стандартный номер порта однозначно идентифицирует тип приложения, однако он не может однозначно идентифицировать прикладной процесс этого приложения. Одно приложение может одновременно осуществлять несколько процессов. Поэтому прикладной процесс однозначно определяется в пределах сети и в пределах отдельного компьютера парой (IP-адрес, номер порта) и называется сокетом (socket). Логическое TCP-соединение однозначно идентифицируется парой сокетов, определенных для этого соединения двумя взаимодействующими сокетами.

При работе на хост-отправителе протокол TCP рассматривает информацию, поступающую к нему от уровня приложений, как неструктурированный поток байтов. Эти данные буферируются средствами TCP. На уровень IP из буфера «вырезаются» сегменты, к которым добавляются заголовки. В состав заголовка входят сегменты SYN и ACK, служащие для установления TCP-соединения.

Для передачи сегмента данных имеются три поля, связанные с управлением потоком (восстановлением целостности принятого сообщения): порядковый номер (SN), номер подтверждения (AN) и окно (W) .Когда транспортный объект отправляет сегмент, он помещает в поле данных сегмента порядковый номер первого байта. Принимающий объект подтверждает получение сегмента с помощью обратного сегмента, в котором (АN=i, W=j), что означает:

  • все байты до SN=i-1 подтверждены. Следующий ожидаемый байт имеет номер АN=i.
  • разрешается отправить дополнительное окно из W=j байт данных, т.е. байты от I до i+j-1.

Таким образом, протокол TCP обеспечивает надежную доставку сообщений, поступающих из сети от ненадежного дейтаграммного протокола на межсетевом уровне. В сети Х.25 функцию надежной доставки выполняет канальный уровень модели OSI, который был подробно рассмотрен в предыдущих главах, а в сети Frame Relay эту функцию выполняет протокол ITU-T Q.921.

Предположим, что вы плохо владеете сетевыми технологиями, и даже не знаете элементарных основ. Но вам поставили задачу: в быстрые сроки построить информационную сеть на небольшом предприятии. У вас нет ни времени, ни желания изучать толстые талмуды по проектированию сетей, инструкции по использованию сетевого оборудования и вникать в сетевую безопасность. И, главное, в дальнейшем у вас нет никакого желания становиться профессионалом в этой области. Тогда эта статья для вас.


Вторая часть этой статьи, где рассматривается практическое применение изложенных здесь основ: Заметки о Cisco Catalyst: настройка VLAN, сброс пароля, перепрошивка операционной системы IOS

Понятие о стеке протоколов

Задача - передать информацию от пункта А в пункт В. Её можно передавать непрерывно. Но задача усложняется, если надо передавать информацию между пунктами A<-->B и A<-->C по одному и тому же физическому каналу. Если информация будет передаваться непрерывно, то когда С захочет передать информацию в А - ему придётся дождаться, пока В закончит передачу и освободит канал связи. Такой механизм передачи информации очень неудобен и непрактичен. И для решения этой проблемы было решено разделять информацию на порции.

На получателе эти порции требуется составить в единое целое, получить ту информацию, которая вышла от отправителя. Но на получателе А теперь мы видим порции информации как от В так и от С вперемешку. Значит, к каждой порции надо вписать идентификационный номер, что бы получатель А мог отличить порции информации с В от порций информации с С и собрать эти порции в изначальное сообщение. Очевидно, получатель должен знать, куда и в каком виде отправитель приписал идентификационные данные к исходной порции информации. И для этого они должны разработать определённые правила формирования и написания идентификационной информации. Далее слово «правило» будет заменяться словом «протокол».

Для соответствия запросам современных потребителей, необходимо указывать сразу несколько видов идентификационной информации. А так же требуется защита передаваемых порций информации как от случайных помех (при передаче по линиям связи), так и от умышленных вредительств (взлома). Для этого порция передаваемой информации дополняется значительным количеством специальной, служебной информацией.

В протоколе Ethernet находятся номер сетевого адаптера отправителя (MAC-адрес), номер сетевого адаптера получателя, тип передаваемых данных и непосредственно передаваемые данные. Порция информации, составленная в соответствии с протоколом Ethernet, называется кадром. Считается, что сетевых адаптеров с одинаковым номером не существует. Сетевое оборудование извлекает передаваемые данные из кадра (аппаратно или программно), и производит дальнейшую обработку.

Как правило, извлечённые данные в свою очередь сформированы в соответствии с протоколом IP и имеют другой вид идентификационной информации - ip адрес получателя (число размером в 4 байта), ip адрес отправителя и данные. А так же много другой необходимой служебной информации. Данные, сформированные в соответствии с IP протоколом, называются пакетами.

Далее извлекаются данные из пакета. Но и эти данные, как правило, ещё не являются изначально отправляемыми данными. Этот кусок информации тоже составлен в соответствии определённому протоколу. Наиболее широко используется TCP протокол. В нём содержится такая идентификационная информация, как порт отправителя (число размером в два байта) и порт источника, а так же данные и служебная информация. Извлечённые данные из TCP, как правило, и есть те данные, которые программа, работающая на компьютере В, отправляла «программе-приёмнику» на компьютере A.

Вложность протоколов (в данном случае TCP поверх IP поверх Ethernet) называется стеком протоколов.

ARP: протокол определения адреса

Существуют сети классов A, B, C, D и E. Они различаются по количеству компьютеров и по количеству возможных сетей/подсетей в них. Для простоты, и как наиболее часто встречающийся случай, будем рассматривать лишь сеть класса C, ip-адрес которой начинается на 192.168. Следующее число будет номером подсети, а за ним - номер сетевого оборудования. К примеру, компьютер с ip адресом 192.168.30.110 хочет отправить информацию другому компьютеру с номером 3, находящемуся в той же логической подсети. Это значит, что ip адрес получателя будет такой: 192.168.30.3

Важно понимать, что узел информационной сети - это компьютер, соединённый одним физическим каналом с коммутирующим оборудованием. Т.е. если мы отправим данные с сетевого адаптера «на волю», то у них одна дорога - они выйдут с другого конца витой пары. Мы можем послать совершенно любые данные, сформированные по любому, выдуманному нами правилу, ни указывая ни ip адреса, ни mac адреса ни других атрибутов. И, если этот другой конец присоединён к другому компьютеру, мы можем принять их там и интерпретировать как нам надо. Но если этот другой конец присоединён к коммутатору, то в таком случае пакет информации должен быть сформирован по строго определённым правилам, как бы давая коммутатору указания, что делать дальше с этим пакетом. Если пакет будет сформирован правильно, то коммутатор отправит его дальше, другому компьютеру, как было указано в пакете. После чего коммутатор удалит этот пакет из своей оперативной памяти. Но если пакет был сформирован не правильно, т.е. указания в нём были некорректны, то пакет «умрёт», т.е. коммутатор не будет отсылать его куда либо, а сразу удалит из своей оперативной памяти.

Для передачи информации другому компьютеру, в отправляемом пакете информации надо указать три идентификационных значения - mac адрес, ip адрес и порт. Условно говоря, порт - это номер, который, выдаёт операционная система каждой программе, которая хочет отослать данные в сеть. Ip адрес получателя вводит пользователь, либо программа сама получает его, в зависимости от специфики программы. Остаётся неизвестным mac адрес, т.е. номер сетевого адаптера компьютера получателя. Для получения необходимой данной, отправляется «широковещательный» запрос, составленный по так называемому «протоколу разрешения адресов ARP». Ниже приведена структура ARP пакета.

Сейчас нам не надо знать значения всех полей на приведённой картинке. Остановимся лишь на основных.

В поля записываются ip адрес источника и ip адрес назначения, а так же mac адрес источника.

Поле «адрес назначения Ethernet» заполняется единицами (ff:ff:ff:ff:ff:ff). Такой адрес называется широковещательным, и такой фрейм будер разослан всем «интерфейсам на кабеле», т.е. всем компьютерам, подключённым к коммутатору.

Коммутатор, получив такой широковещательный фрейм, отправляет его всем компьютерам сети, как бы обращаясь ко всем с вопросом: «если Вы владелец этого ip адреса (ip адреса назначения), пожалуйста сообщите мне Ваш mac адрес». Когда другой компьютер получает такой ARP запрос, он сверяет ip адрес назначения со своим собственным. И если он совпадает, то компьютер, на место единиц вставляет свой mac адрес, меняет местами ip и mac адреса источника и назначения, изменяет некоторую служебную информацию и отсылает пакет обратно коммутатору, а тот обратно - изначальному компьютеру, инициатору ARP запроса.

Таким образом ваш компьютер узнаёт mac адрес другого компьютера, которому вы хотите отправить данные. Если в сети находится сразу несколько компьютеров, отвечающих на этот ARP запрос, то мы получаем «конфликт ip адресов». В таком случае необходимо изменить ip адрес на компьютерах, что бы в сети не было одинаковых ip адресов.

Построение сетей

Задача построения сетей

На практике, как правило, требуется построить сети, число компьютеров в которой будет не менее ста. И кроме функций файлообмена, наша сеть должна быть безопасной и простой в управлении. Таким образом, при построении сети, можно выделить три требования:
  1. Простота в управлении. Если бухгалтера Лиду переведут в другой кабинет, ей по-прежнему понадобится доступ к компьютерам бухгалтеров Анны и Юлии. И при неправильном построении своей информационной сети, у администратора могут возникнуть трудности в выдаче Лиде доступа к компьютерам других бухгалтеров на её новом месте.
  2. Обеспечение безопасности. Для обеспечения безопасности нашей сети, права доступа к информационным ресурсам должны быть разграничены. Так же сеть должна быть защищена от угроз раскрытия, целостности и отказа в обслуживании. Подробнее читайте в книге «Атака на Internet» автора Илья Давидович Медведовский, глава «Основные понятия компьютерной безопасности» .
  3. Быстродействие сети. При построении сетей есть техническая проблема - зависимость скорости передачи от количества компьютеров в сети. Чем больше компьютеров - тем ниже скорость. При большом количестве компьютеров, быстродействие сети может стать настолько низким, что она станет неприемлемой заказчику.
Из-за чего при большом количестве компьютеров снижается скорость сети? - причина проста: из-за большого количества широковещательных сообщений (ШС). ШС - это сообщение, которое, приходя на коммутатор, отправляется всем хостам сети. Или, грубо говоря, всем компьютерам, находящимся в вашей подсети. Если компьютеров в сети 5, то каждый компьютер будет принимать по 4 ШС. Если их будет 200, то каждый компьютер в такой большой сети будет принимать по 199 ШС.

Существует большое множество приложений, программных модулей и сервисов, которые, для своей работы отправляют в сеть широковещательные сообщения. Описанный в пункте ARP: протокол определения адреса лишь один из множества ШС, отправляемый вашим компьютером в сеть. Например, когда вы заходите в «Сетевое окружение» (ОС Windows), ваш компьютер посылает ещё несколько ШС со специальной информацией, сформированной по протоколу NetBios, что бы просканировать сеть на наличие компьютеров, находящихся в той же рабочей группе. После чего ОС рисует найденные компьютеры в окне «Сетевое окружение» и вы их видите.

Так же стоит заметить, что во время процесса сканирования той или иной программой, ваш компьютер отсылает ни одно широковещательное сообщение, а несколько, к примеру для того, что бы установить с удалёнными компьютерами виртуальные сессии или ещё для каких либо системных нужд, вызванных проблемами программной реализации этого приложения. Таким образом, каждый компьютер в сети для взаимодействия с другими компьютерами вынужден посылать множество различных ШС, тем самым загружая канал связи не нужной конечному пользователю информацией. Как показывает практика, в больших сетях широковещательные сообщения могут составить значительную часть трафика, тем самым замедляя видимую для пользователя работу сети.

Виртуальные локальные сети

Для решения первой и третьей проблем, а так же в помощь решения второй проблемы, повсеместно используют механизм разбиения локальной сети на более маленькие сети, как бы отдельные локальные сети (Virtual Local Area Network). Грубо говоря, VLAN - это список портов на коммутаторе, принадлежащих одной сети. «Одной» в том смысле, что другой VLAN будет содержать список портов, принадлежащих другой сети.

Фактически, создание двух VLAN-ов на одном коммутаторе эквивалентно покупке двух коммутаторов, т.е. создание двух VLAN-ов - это всё равно, что один коммутатор разделить на два. Таким образом происходит разбиение сети из ста компьютеров на более маленькие сети, из 5-20 компьютеров - как правило именно такое количество соответствует физическому местонахождению компьютеров по надобности файлообмена.

  • При разбиении сети на VLAN-ы достигается простота управления. Так, при переходе бухгалтера Лиды в другой кабинет, администратору достаточно удалить порт из одного VLAN-а и добавить в другой. Подробнее это рассмотрено в пункте VLAN-ы, теория.
  • VLAN-ы помогают решить одно из требований к безопасности сети, а именно разграничение сетевых ресурсов. Так, студен из одной аудитории не сможет проникнуть на компьютеры другой аудитории или компьютер ректора, т.к. они находятся в фактически разных сетях.
  • Т.к. наша сеть разбита на VLAN-ы, т.е. на маленькие «как бы сети», пропадает проблема с широковещательными сообщениями.

VLAN-ы, теория

Возможно, фраза «администратору достаточно удалить порт из одного VLAN-а и добавить в другой» могла оказаться непонятной, поэтому поясню её подробнее. Порт в данном случае - это не номер, выдаваемый ОС приложению, как было рассказано в пункте Стек протоколов, а гнездо (место) куда можно присоединить (вставить) коннектор формата RJ-45. Такой коннектор (т.е. наконечник к проводу) прикрепляется к обоим концам 8-ми жильного провода, называемого «витая пара». На рисунке изображён коммутатор Cisco Catalyst 2950C-24 на 24 порта:
Как было сказано в пункте ARP: протокол определения адреса каждый компьютер соединён с сетью одним физическим каналом. Т.е. к коммутатору на 24 порта можно присоединить 24 компьютера. Витая пара физически пронизывает все помещения предприятия - все 24 провода от этого коммутатора тянутся в разные кабинеты. Пусть, к примеру, 17 проводов идут и подсоединяются к 17-ти компьютерам в аудитории, 4 провода идут в кабинет спецотдела и оставшиеся 3 провода идут в только что отремонтированный, новый кабинет бухгалтерии. И бухгалтера Лиду, за особые заслуги, перевели в этот самый кабинет.

Как сказано выше, VLAN можно представлять в виде списка принадлежащих сети портов. К примеру, на нашем коммутаторе было три VLAN-а, т.е. три списка, хранящиеся во flash-памяти коммутатора. В одном списке были записаны цифры 1, 2, 3… 17, в другом 18, 19, 20, 21 и в третьем 22, 23 и 24. Лидин компьютер раньше был присоединён к 20-ому порту. И вот она перешла в другой кабинет. Перетащили её старый компьютер в новый кабинет, или она села за новый компьютер - без разницы. Главное, что её компьютер присоединили витой парой, другой конец которой вставлен в порт 23 нашего коммутатора. И для того, что бы она со своего нового места могла по прежнему пересылать файлы своим коллегам, администратор должен удалить из второго списка число 20 и добавить число 23. Замечу, что один порт может принадлежать только одному VLAN-у, но мы нарушим это правило в конце этого пункта.

Замечу так же, что при смене членства порта в VLAN, администратору нет никакой нужды «перетыкать» провода в коммутаторе. Более того, ему даже не надо вставать с места. Потому что компьютер администратора присоединён к 22-ому порту, с помощью чего он может управлять коммутатором удалённо. Конечно, благодаря специальным настройкам, о которых будет рассказано позже, лишь администратор может управлять коммутатором. О том, как настраивать VLAN-ы, читайте в пункте VLAN-ы, практика [в следующей статье].

Как вы, наверное, заметили, изначально (в пункте Построение сетей) я говорил, что компьютеров в нашей сети будет не менее 100. Но к коммутатору можно присоединить лишь 24 компьютера. Конечно, есть коммутаторы с большим количеством портов. Но компьютеров в корпоративной сети/сети предприятия всё равно больше. И для соединения бесконечно большого числа компьютеров в сеть, соединяют между собой коммутаторы по так называемому транк-порту (trunk). При настройки коммутатора, любой из 24-портов можно определить как транк-порт. И транк-портов на коммутаторе может быть любое количество (но разумно делать не более двух). Если один из портов определён как trunk, то коммутатор формирует всю пришедшую на него информацию в особые пакеты, по протоколу ISL или 802.1Q, и отправляет эти пакеты на транк-порт.

Всю пришедшую информацию - имеется в виду, всю информацию, что пришла на него с остальных портов. А протокол 802.1Q вставляется в стек протоколов между Ethernet и тем протоколом, по которому были сформированные данные, что несёт этот кадр.

В данном примере, как вы, наверное, заметили, администратор сидит в одном кабинете вместе с Лидой, т.к. витая пора от портов 22, 23 и 24 ведёт в один и тот же кабинет. 24-ый порт настроен как транк-порт. А сам коммутатор стоит в подсобном помещении, рядом со старым кабинетом бухгалтеров и с аудиторией, в которой 17 компьютеров.

Витая пара, которая идёт от 24-ого порта в кабинет к администратору, подключается к ещё одному коммутатору, который в свою очередь, подключён к роутеру, о котором будет рассказано в следующих главах. Другие коммутаторы, которые соединяют другие 75 компьютеров и стоят в других подсобных помещениях предприятия - все они имеют, как правило, один транк-порт, соединённый витой парой или по оптоволокну с главным коммутатором, что стоит в кабинете с администратором.

Выше было сказано, что иногда разумно делать два транк-порта. Второй транк-порт в таком случае используется для анализа сетевого трафика.

Примерно так выглядело построение сетей больших предприятий во времена коммутатора Cisco Catalyst 1900. Вы, наверное, заметили два больших неудобства таких сетей. Во первых, использование транк-порта вызывает некоторые сложности и создаёт лишнюю работу при конфигурировании оборудования. А во вторых, и в самых главных - предположим, что наши «как бы сети» бухгалтеров, экономистов и диспетчеров хотят иметь одну на троих базу данных. Они хотят, что бы та же бухгалтерша смогла увидеть изменения в базе, которые сделала экономистка или диспетчер пару минут назад. Для этого нам надо сделать сервер, который будет доступен всем трём сетям.

Как говорилось в середине этого пункта, порт может находиться лишь в одном VLAN-е. И это действительно так, однако, лишь для коммутаторов серии Cisco Catalyst 1900 и старше и у некоторых младших моделей, таких как Cisco Catalyst 2950. У остальных коммутаторов, в частности Cisco Catalyst 2900XL это правило можно нарушить. При настройке портов в таких коммутаторах, каждый пор может иметь пять режимов работы: Static Access, Multi-VLAN, Dynamic Access, ISL Trunk и 802.1Q Trunk. Второй режим работы именно то, что нам нужно для выше поставленной задачи - дать доступ к серверу сразу с трёх сетей, т.е. сделать сервер принадлежащим к трём сетям одновременно. Так же это называется пересечением или таггированием VLAN-ов. В таком случае схема подключения может быть такой.

Если вкратце, то это набор правил, которые регулируют «общение» компьютеров между собой по сети. Их существует около десятка, и каждый из них определяет правила передачи отдельного типа данных. Но для удобства в обращении их все объединяют в так называемый «стек», называя его именем самого важного протокола - протокола TCP/IP (Transmission Control Protocol и Internet Protocol). Слово ­­«стек» подразумевает, что все эти протоколы представляют собой как бы «стопку протоколов», в которой протокол верхнего уровня не может функционировать без протокола нижнего уровня.

Стек TCP/IP включает 4 уровня:

1. Прикладной - протоколы HTTP, RTP, FTP, DNS. Самый верхний уровень; отвечает за работу прикладных приложений, например почтовых сервисов, отображение данных в браузере и прочее.

2. Транспортный - протоколы TCP, UDP, SCTP, DCCP, RIP. Данный уровень протоколов обеспечивает правильное взаимодействие компьютеров между собой и является проводником данных между разными участниками сети.

3. Сетевой - протокол IP. Этот уровень обеспечивает идентификацию компьютеров в сети, раздавая каждому из них уникальный цифровой адрес.

4. Канальный - протоколы Ethernet, IEEE 802.11, Wireless Ethernet. Самый низкий уровень; он взаимодействует с физическим оборудованием, описывает среду передачи даннных и ее характеристики.

Следовательно, для отображения этой статьи ваш компьютер использует стек протоколов «HTTP - TCP - IP - Ethernet».

Как передается информация по интернету

Каждый компьютер в сети называется хостом и с помощью одноименного протокола получает уникальный IP-адрес. Этот адрес записывается в следующей форме: четыре числа от 0 до 255, разделенных точкой, например, 195.19.20.203. Для успешного обмена информацией по сети IP-адрес также должен включать номер порта. Поскольку информацией обмениваются не сами компьютеры, а программы, каждый тип программы должен также иметь собственный адрес, который и отображается в номере порта. Например, порт 21 отвечает за работу FTP, порт 80 - за работу HTTP. Общее количество портов у компьютера ограничено и равно 65536 с нумерацией от 0 до 65535. Номера портов от 0 до 1023 зарезервированы серверными приложениями, а нишу портов с 1024 по 65535 занимают клиентские порты, которыми программы вольны распоряжаться как угодно. «Клиентские порты» назначаются динамически.

Комбинация IP-адреса и номера порта называется «сокет» . В нем значения адреса и порта разделяются двоеточием, например, 195.19.20.203:110

Таким образом, чтобы удаленный компьютер с IP 195.19.20.203 получил электронную почту, нужно всего лишь доставить данные на его порт 110. А, поскольку, этот порт денно и нощно «слушает» протокол POP3 , который отвечает за прием электронных писем, значит дальнейшее — «дело техники».

Все данные по сети для удобства разбиваются на пакеты. Пакет - это файл размером 1-1,5 Мб, который содержит адресные данные отправителя и получателя, передаваемую информацию, плюс служебные данные. Разбиение файлов на пакеты позволяет намного снизить нагрузку на сеть, т.к. путь каждого из них от отправителя к получателю не обязательно будет идентичным. Если в одном месте в сети образуется «пробка», пакеты смогут ее оминуть, используя другие пути сообщения. Такая технология позволяет максимально эффективно использовать интернет: если какая-то транспортная часть его обрушится, информация сможет и дальше передаваться, но уже по другим путям. Когда пакеты достигают целевой компьютер, он начинает собирать их обратно в цельный файл, используя служебную информацию, которую они содержат. Весь процесс можно сравнить с неким большим паззлом, который, в зависимости от размеров передаваемого файла, может достигать воистину огромных размеров.

Как уже было сказано ранее, IP-протокол выдает каждому участнику сети, в том числе, сайтам уникальный числовой адрес. Однако запомнить миллионы IP-адресов никакому человеку не под силу! Поэтому был создан сервис доменных имен DNS (Domain Name System), который занимается тем, что переводит цифровые IP-адреса в буквенно-цифровые имена, которые гораздо легче запомнить. Например, вместо того, чтобы набирать каждый раз ужасное число 5.9.205.233, можно набрать в адресной строке браузера www.сайт.

Что же происходит, когда мы набираем в браузере адрес искомого сайта? С нашего компьютера отправляется пакет с запросом DNS-серверу на порт 53. Этот порт зарезервирован службой DNS, которая, обработав наш запрос, возвращает IP-адрес, соответствующий буквенно-цифровому имени сайта. После этого наш компьютер соединяется с сокетом 5.9.205.233:80 компьютера 5.9.205.233, на котором расположен HTTP-протокол, отвечающий за отображение сайтов в браузере, и посылает пакет с запросом на получение страницы www.сайт. Нам нужно установить соединение именно на 80-й порт, поскольку именно он соответствует Веб-серверу. Можно, при большом желании, указать 80-й порт и прямо в адресной строке браузера — http://www.сайт:80. Веб-сервер обрабатывает полученный от нас запрос и выдает несколько пакетов, содержащих текст HTML, который отображает наш браузер. В результате мы видим на экране главную страницу

Привет, посетитель сайта сайт! Продолжаем изучать , напомню, что эти записи основаны на программе и помогут вам подготовиться к экзаменам CCENT/CCNA. Продолжаем разговор об эталонных моделях и на этот раз мы рассмотрим модель, которая была разработана путем практических наработок, эта модель называется модель стека протоколов TCP/IP , она похожа на модель OSI 7, но имеются и свои отличия, которые довольно значительны и их стоит обсудить, а также обозначить.

Помимо разбора самой модели TCP/IP в общем и целом, а также каждого уровня этой модели в отдельности, которых кстати четыре, мы сделаем сравнение эталонной модели OSI 7 и модели стека протоколов TCP/IP , чтобы понять какими недостатками и преимуществами обладают эти концепции передачи данных, в завершении мы выведем компромиссную модель передачи данных, которая будет включать в себя преимущества обеих упомянутых концепций.

Перед началом я хотел бы вам напомнить, что ознакомиться с опубликованными материалами первой части нашего курса можно по ссылке: « ».

1.15.1 Введение

Ранее мы рассмотрели модель OSI 7 и уделили особое внимание той ее части, за которую отвечает сетевой инженер. Также в блоге есть отдельная публикация, где рассмотрена более подробно. Мы отмечали, что модель OSI 7 была разработана теоретиками и имеет огромное количество сложных протоколов, которые так и не были реализованы на практике.

Давайте теперь взглянем на модель, которая была разработана практиками и протоколы которой применяются в реальных компьютерных сетях, эта модель называется модель стека протоколов TCP/IP , я уверен, что эти протоколы вы уже слышали и каждый день ими пользуетесь, даже не зная того. До этих протоколов мы еще доберемся, сейчас рассмотрим саму модель.

1.15.2 Общий принцип работы модели стека протоколов TCP/IP

Общий принцип работы модели стека протоколов TCP/IP очень похож на принцип работы модели OSI 7, разница только в количестве уровней и их функционале. Думаю, что не будет лишним отметить следующее (тут многие могут со мной согласиться): модель OSI 7 более полно описывает взаимодействие компьютерной сети с точки зрения логики ее работы, но ее протоколы абсолютно не прижились в современных реалиях, а модель стека протоколов TCP/IP описывает компьютерную сеть не так полно, зато ее протоколы используются повсеместно .

Вообще модель TCP/IP более удобна для сетевого инженера, здесь более четко описаны его границы ответственности. Давайте посмотрим на структуру модели TCP/IP, которая показана на Рисунке 1.15.1.

Как видим, отличие модели TCP/IP от OSI 7 заключается в количестве уровней , у эталонной модели их семь, в модели стека протоколов их четыре. В модели TCP/IP объединены первых два уровня модели OSI 7 ( и ), здесь первый уровень называется уровень доступа к сети или канальный уровень. На уровне доступа к сети в модели сетка протоколов TCP/IP работают такие технологии и протоколы как: Ethernet, который есть практически в каждой локальной сети, IEEE 802.11 (Wi-Fi), PPP, в общем и целом на первом уровне модели стека протоколов TCP/IP реализуется функционал физического и канального уровней модели OSI 7.

Второй уровень модели TCP/IP соответствует третьему уровню модели OSI 7, в разных источниках вы можете встретить разные названия третьего уровня: уровень сети Интернет, сетевой уровень, межсетевой уровень. Можно сказать, что это основной и самый интересный для сетевого инженера уровень. Так как на этом уровне определяется логическая адресация узлов сети Интернет и, по сути, этот уровень является конечным для сетевого оборудования, за на более высоких уровнях уже отвечают конечные устройства: и .

Третий уровень модели TCP/IP имеет такое же название, как и в модели OSI – Транспортный уровень, правда в модели OSI этот уровень в порядке нумерации идет четвертым. Транспортный уровень отвечает за надёжность передачи для конечных устройств поверх ненадежной компьютерной сети , в которой в любой момент могут возникать самые разные проблемы. К тому же транспортный уровень помогает различать компьютерам следующее: какой трафик какое приложение генерирует и какому приложению предназначены те или иные пакеты, это возможно благодаря сокетам. На транспортном уровне для нас будут интересны два протокола: TCP, который обеспечивает надежную передачу с установкой соединения, этот протокол используется для передачи данных типа текст, файлов и так далее, а также протокол UDP, этот протокол без установки соединения и используется он для передачи данных в системах реального времени: аудио и видео связь. Про вы можете узнать из записи, опубликованной ранее.

Ну а на самом верху модели TCP/IP находится уровень приложений или прикладной уровень, который отвечает за взаимодействие с конечным пользователем. Этот уровень модели TCP/IP включает в себя сразу три уровня модели OSI 7 (сеансовый, представительский и прикладной уровни), что на самом деле очень удобно как для программистов и разработчиков, так и для сетевых инженеров. Программист может писать приложения, не задумываясь об уровнях, сосредоточившись на своих абстракциях, а сетевому инженеру многие вещи верхних уровней просто неинтересны, но об этом чуть позже.

1.15.3 Первый уровень модели TCP/IP или уровень доступа к сети

Первый уровень – это фундамент компьютерной сети, поверх которого строится вся логика взаимодействия. Пожалуй, основной недостаток модели стека протоколов TCP/IP заключается в том, что физический и канальный уровень модели OSI здесь объединены в один под названием уровень доступа к сети или канальный уровень . На мой взгляд, нужно отделять физические процессы, происходящие на первом уровне от логики, которая реализована в канале связи на втором уровне. Хотя тут могут быть возражения в следующем ключе: такие популярные технологии как Ethernet и IEEE 802.11 в контексте модели OSI 7 работают на двух уровнях (канальном и физическом), тогда как в контексте модели TCP/IP эти технологии реализуют свой функционал на одном уровне – уровне доступа.

Итак, на уровне доступа модели TCP/IP решаются физические вопросы, связанные с передачей сигнала в различных средах:

  • максимальный и минимальный допустимые уровни сигнала в среде передачи данных: если с минимальным все более-менее очевидно, то с максимальным немного поясню: с усилением полезного сигнала усиливаются и помехи;
  • какой уровень сигнала нужно принимать за логический ноль (логический ноль – это не отсутствие сигнала), а какой уровень сигнала будет считаться логической единицей;
  • на физическом уровне определяются технические и конструктивные требования к среде передачи данных, например, если передача по медной линии, то тут можно выделить сетевые интерфейсы типа RJ-45 и RJ-11 или, например, витая пара или коаксиальный кабель;
  • данные в чистом виде никогда не передаются по сети, по сети передаются два объединенных сигнала: полезный сигнал с данными (его еще называют модулирующий) и несущий сигнал, процесс объединения этих двух сигналов называется модуляцией, более подробно об этом читайте в книгах, .

На самом деле этот список можно было продолжать, но для темы нашего курса физический уровень не так важен, так как разработчики сетевого оборудования уже решили за нас все самые сложные аспекты, касающиеся физики передачи данных, нам лишь придется оперировать простыми параметрами, о которых мы поговорим, когда коснемся технологий Ethernet и Wi-Fi.

Уровень доступа к сети в модели TCP/IP включает в себя еще и функционал канального уровня эталонной модели . Собственно, разработчики модели TCP/IP считают канальные функции более важными, и они правы с точки зрения логики процесса передачи данных. Вообще на уровне доступа решается задача кодирования данных для их передачи по физической среде, также на этом уровне реализуется адресация, при помощи которой коммутаторы понимают: какому устройству какой кадр отправить, эти адреса называются мак-адресами, если говорить про Ethernet сети.

Вообще, если говорить про названия единиц передачи данных на уровне доступа в модели TCP/IP, то здесь используются кадры (общую информацию вы можете получить из этой публикации), которые получаются путем логического объединения битов в последовательности. Например, если говорить про Ethernet, то его заголовок, как минимум, будет содержать мак-адрес назначения, мак-адрес источника, тип вышестоящего протокола, а также специальное поле для проверки целостности данных.

Можно выделить следующие протоколы и технологии, которые работают на канальном уровне модели TCP/IP: Ethernet, IEEE 802.11 WLAN, SLIP, Token Ring, ATM. Первым двум мы выделим по целой части, так как в локальных сетях вы будете чаще всего сталкиваться именно с ними.

Еще на канальном уровне реализуется механизм обнаружения и исправления ошибок при помощи специальных кодов, очень подробно про канальные коды рассказано в книге Бернарда Скляра «Цифровая связь», здесь мы на них не останавливаемся. Из физических устройств, работающих на уровне доступа к сети можно выделить (дополнительно можете почитать про ): усилители сигнала, преобразователи сигнала (SFP-модули, медиаконвертеры и т.д.), ретрансляторы, хабы, концентраторы, радио антенны, а также коммутаторы уровня L2, которые будет представлять для нас наибольший интерес, так как их можно и нужно настраивать и у них есть различные по своей полезности механизмы для защиты сети и обеспечения надежности передачи данных.

1.15.4 Второй уровень или уровень сети Интернет

Второй уровень модели TCP/IP называется уровнем сети Интернет, сетевым или межсетевым уровнем. Это один из самых важных уровней для сетевого инженера, так как именно здесь работает протокол IP, отвечающий за логическую адресацию в компьютерных сетях и в сети Интернет, если говорить о частностях . Непосредственно протоколу IP мы уделим целых две части, сначала мы поговорим про версию IPv4, а затем разберемся с версией протокола IPv6. Также на этом уровне работают протоколы динамической маршрутизации, в этом курсе мы разберемся с протоколом RIP, который очень прост, но уже практически нигде не используется. А если будет продолжение, то мы еще будем разбираться с такими замечательными протоколами динамической маршрутизации, как OSPF и EIGRP.

Также на сетевом уровне модели TCP/IP работает такой протокол как NAT, отвечающий за магию превращения (трансляцию) частных IP-адресов в публичные, которые маршрутизируются в сети Интернет. Вообще, этот уровень разрабатывался для того, чтобы появилась возможность взаимодействия между двумя независимыми сетями. Основным физическим устройством уровня сети Интернет является маршрутизатор, который определяет куда направить пакет по IP-адресу, находящемуся в заголовке IP-пакета, для этого маршрутизатор использует маски, а также в этом ему помогают протоколы динамической маршрутизации, при помощи которых один роутер рассказывает о известных ему IP-адресах другому роутеру.

Вообще, как я уже говорил, мы будем разбираться с протоколом IP и IP-адресами в дальнейшем, сейчас же стоит отметить, что есть так называемый мультикаст трафик и специальные IP-адреса, если нужен пример использования, то это IPTV (вот здесь вы можете немного узнать ). Так вот для работы с мультикаст IP-адресами используются такие протоколы как IGMP и PIM, которые мы не будем затрагивать в рамках этого трека, но упомянуть о них стоит. Вообще, протоколов сетевого уровня достаточно много, самые важные для нас на данном этапе мы уже перечислили, однако не упомянули протокол ARP, который помогает определить мак-адрес по известному IP-адресу, этот протокол работает между канальным и сетевым уровнем .

На межсетевом уровне единица измерения данных или PDU называется пакетом, хотя об этом вы уже догадались, когда я использовал слово IP-пакет. При этом структура заголовка IP-пакета в IPv4 достаточно сильно отличается от структуры пакета в IPv6, как и сами IP-адреса этих протоколов.

Стоит еще добавить, что настройки, производимые на сетевом уровне модели TCP/IP влияют на логику работу компьютерной сети, то есть на ее логическую топологию, в то время как действия выполняемые на первом уровне влияют на .

1.15.5 Третий или транспортный уровень стека протоколов TCP/IP

Транспортный уровень в современных компьютерных сетях в сущности представлен двумя протоколами: TCP и UDP . Первый большой и толстый, в основном используется для передачи текстовых данных и файлов по сети, второй маленький, тонкий и очень простой и используется для передачи аудио и видео данных по сети. У протокола TCP есть механизм повторной передачи битых или потерянных данных, у UDP такого механизма нет. Принципиальных отличий у этих двух протоколов много, но самое важное отличие заключается в том, что у TCP есть механизм установки соединения, а вот у UDP такого механизма нет.

Вообще, протоколы транспортного уровня должны обеспечить надежное соединение поверх ненадёжной компьютерной сети, на которой в любой момент может произойти авария, или же где-то, на каком-то участке сети, могут быть потери. Механизмы транспортного уровня реализуются на конечных компьютерах, будь то сервер или клиент, в зависимости от типа конечного устройства немного изменяется его логика работы на транспортном уровне.

Итак, получаем, что у клиентского ПК IP-адрес: 192.168.2.3, а также клиентский ПК выдал клиентскому приложению порт с номером 23678 для установки соединения с первым сервером (пусть приложением будет браузер), а для установки со вторым сервером браузер получил порт 23698. Клиентский ПК делает запросы к , находящимся в одной сети с клиентом: у первого сервера IP-адрес: 192.168.2.8, а у второго: 192.168.2.12, при этом порт как в первом, так и во втором случае одинаковый – 80, также хочу обратить внимание на то, что клиентский ПК сообщает серверам разные порты, на которые нужно слать ответы. Таким образом, если клиентский компьютер хочет сделать запрос к первому серверу, то он использует примерно следующую конструкцию для запроса: 192.168.2.8:80, это означает, что запрос был послан машине с IP-адресом 192.168.2.8 на 80 порт, сервер же пошлет ответ, используя вот такую конструкцию 192.168.2.3:23678. Если же запрос идет на 192.168.2.12:80, то ответ будет передан на 192.168.2.3:23698.

Таким образом происходит разделение трафика и компьютер не путается. Вообще, это описание предельно упрощено, более подробно мы будем говорить о протоколах транспортного уровня в отдельной части, так как эта тема довольно большая и требует отдельного разговора, кстати сказать, в курсах Cisco ICND1 и ICND2 достаточно мало времени уделено транспортному уровню . Здесь же стоит добавить что комбинация IP-адрес + порт транспортного уровня обычно называется сокетом, при этом не имеет значения протокол транспортного уровня (TCP или UDP).

За работу транспортного уровня отвечает компьютер и его операционная система или же специальная сетевая библиотека на этом компьютере, к которой может обращаться любое приложение, желающее передавать или получать данные.

1.15.6 Четвертый уровень или уровень приложений

Четвертый уровень модели TCP/IP представляет наименьший интерес для сетевого инженера, этот уровень создают и обслуживают: программисты, системные администраторы, devops-инженеры , хотя на уровне приложений есть несколько протоколов, которые важны и нужны сетевому инженеру. Вообще, основная задача прикладного уровня заключается в том, чтобы предоставить пользователю удобный интерфейс для взаимодействия с компьютерами и компьютерными сетями, но это если говорить коротко.

Пожалуй, самым известным протоколом уровня приложений является , который используют ваши браузеры для того, чтобы получить данные с того или иного сайта в сети Интернет. Протокол HTTP работает по схеме клиент-сервер, как и многие другие подобные протоколы, взаимодействием в протоколе HTTP управляет клиент, который отправляет специальные , так называемые , а сервер, получив это сообщение, анализирует его и дает клиенту свои сообщения, которые называются , вообще, если тема вам интересна, то у меня блоге вы найдете рубрику, по протоколу .
Из важных для сетевого инженера протоколов на четвертом уровне находятся:

  • DHCP – протокол, позволяющий динамически выдавать клиентским машинам IP-адреса и другие данные для подключения к сети;
  • DNS – этот протокол придумали люди с дырявой памятью, которые не хотели запоминать IP-адреса, DNS позволяет преобразовывать IP-адреса в сайтов и наоборот, для практики можете разобраться с командой nslookup;
  • SNMP – протокол, который используется во всех системах управления и мониторинга компьютерных сетей;
  • SSH – протокол для безопасного удаленного управления, при использовании SSH данные шифруются;
  • Telnet – еще один протокол удаленного управления, этот протокол реализует простой текстовый сетевой интерфейс.

Вообще этот список можно продолжить, но пока этого нам достаточно. В рамках курса мы разберемся как подключаться к коммутаторам и маршрутизаторам при помощи протоколов Telnet и SSH, научимся управлять соединениями и его параметрами, также мы немного разберемся с протоколами DHCP и DNS, возможно, в дальнейшем знакомство будет продолжено, а вот протокол SNMP мы трогать не будем.

Также стоит отметить следующие протоколы, относящиеся к прикладному уровню модели стека протоколов TCP/IP: RDP для удаленного управления компьютером, SMPT, IMAP, POP3 это всё почтовые протоколы для реализации разного функционала, первый использует протокол TCP, а второй более простой использует UDP.

Список протоколов на прикладном уровне очень велик и перечислять их все не имеет смысла. На четвертом уровне уже нельзя выделить отдельных аппаратных средств, так как задачи уровня приложений решаются программным способом, а в качестве PDU, то есть единиц измерения, выступают просто данные, которые могут выглядеть тем или иным образом в зависимости от приложения, которое работает, обрабатывает или передает данные.

1.15.7 Сравнение моделей OSI 7 и TCP/IP, а также поиск компромисса

Прежде чем перейти к сравнению моделей OSI 7 и TCP/IP, нам следует сказать, что модель стека протоколов TCP/IP использовалась для создания сети ARPANET, которая спустя годы превратилась в тот Интернет , которым мы пользуемся, сеть ARPANET – была исследовательской сетью, финансируемой министерством обороны США, эта сеть объединила сотни университетов и правительственных зданий в единую систему передачи данных при помощи телефонных линий, но с развитием технологий появилась спутниковая связь, радиосвязь, связь при помощи оптических линий и появились проблемы с передачей данных во всем этом зоопарке, разработка моделей передачи данных должна была решить возникшие проблемы и в принципе задача была решена.

Давайте же теперь попробуем сравнить эталонную модель сетевого взаимодействия OSI 7 с моделью стека протоколов TCP/IP и посмотрим, чем практическая модель отличается от теоретической . Для начала обратите внимание на Рисунок 1.15.3.

Рисунок 1.15.3 Сравнение эталонных моделей передачи данных TCP/IP и OSI 7

Слева показана эталонная модель сетевого взаимодействия, а справа вы видите модель стека протоколов TCP/IP. Сначала очевидные вещи: физический и канальный уровень модели OSI 7 соответствует уровню доступа к сети в модели TCP/IP, сетевой и транспортный уровень у обеих моделей совпадают, а вот три верхних уровня модели OSI соответствуют прикладному уровню модели TCP/IP.

Сразу отметим, что функциональность уровней этих моделей во многом схожа, а вот протоколы двух этих моделей очень разнятся, стоит заметить, что протоколы модели OSI 7 так и не были реализованы или же не получили широкого практического применения, поэтому их мы не упоминаем. Вообще, данной теме люди посвящают целые книги, мы же попробуем уложиться побыстрее.

В основе модели OSI 7 лежат три важных объекта: протокол, интерфейс и служба, модель OSI 7 четко выделяет эти три концепции и подчеркивает, что это совершенно разные вещи. Сервис или служба определяют то, что именно делает тот или иной уровень, но он никак не описывает каким образом это все происходит, другими словами сервис описывает услугу, которую нижележащий уровень предоставляет вышестоящему уровню, но он не говорит как это делается и как вообще третий уровень получает доступа ко второму, а второй к первому.

Интерфейс в эталонной модели рассказывает и описывает то, как верхний уровень может получить доступ к услугам нижележащего уровня. Интерфейс описывает требуемые входные параметры, а также то, что должно получиться на выходе, но, как и сервис, интерфейс ничего не рассказывает о интимных вещах, которые происходят внутри него.

И наконец протоколы, которые еще называют равноранговыми протоколами, поскольку они описывают то, как взаимодействуют устройства на конкретном уровне, являются инструментами конкретного уровня, каждый протокол использует для решения каких-либо конкретных задач. При этом сам уровень для решения той или иной задачи волен выбирать протокол по своему усмотрению и даже изменять этот протокол, при этом не происходит никаких изменений на более высоких уровнях, об этом мы говорили, когда разбирались с .

А вот в первоначальном виде модели стека протоколов TCP/IP не было таких четких границ между тремя вышеописанными сущностями, поэтому реализация протоколов здесь скрыта хуже, чем в модели OSI 7, да и замена одного протокола на другой может происходить более болезненно, чем в модели OSI 7, в общем, на практике не все так гладко.

Еще одним важны отличием моделей TCP/IP и OSI 7 является то, что эталонная модель OSI 7 была разработана раньше, чем ее протоколы появились на бумаге. С одной стороны, это говорит про универсальность модели передачи данных, но с другой стороны: универсальные вещи хуже решают конкретные задачи. Например, простым кухонным ножом можно открыть банку сгущенки, но это гораздо удобнее сделать специальным консервным ножом. Отсюда и основные проблемы эталонной модели: у разработчиков модели OSI не было четкого понимания того, какие функции на каком уровне должны быть реализованы.

Также модель OSI изначально не была рассчитана на то, что когда-нибудь появятся широковещательные сети. Передача данных в сетях, построенных на принципах модели OSI 7, велась от узла к узлу, с вероятностью 99% ваша домашняя сеть и сеть вашего поставщика услуг доступа в Интернет широковещательная. Поэтому разработчикам пришлось вносить коррективы, добавив новый подуровень в модель OSI. Городульки в модели OSI не закончились на канальном уровне, когда на основе модели OSI 7 начали реализовывать первые компьютерные сети, оказалось, что существующие протоколы не соответствуют спецификациям служб, поэтому в модель были добавлены дополнительные подуровни для устранения несоответствия. И в заключении: при разработке модели OSI 7 не был учтен момент интеграции и объединения нескольких небольших сетей в одну большую, предполагалось, что в каждой стране будет одна большая единая сеть, находящаяся под управлением государства.

В TCP/IP все вышло ровным счетом наоборот: сначала были придуманы и реализованы протоколы этой модели, а затем появилась необходимость в том, чтобы создать модель, которая описывает сетевое взаимодействие с использованием этих протоколов . Таким образом протоколы модели стека TCP/IP четко соответствуют уровням и функциям этих уровней. Единственный минус, этот минус не такой значительный для современного мира, заключается в том, что модель стека протоколов TCP/IP не соответствует никаким другим моделям. Минус незначительный, так как большинство компьютерных сетей построены на основе модели TCP/IP и ее протоколов .

Еще одно важное отличие моделей TCP/IP и OSI 7 кроется на сетевом и транспортном уровнях. Модель TCP/IP на сетевом уровне реализуется связь без установления соединения при помощи протокола IP, а на транспортном уровне предлагает два протокола: UPD и TCP. А вот модель OSI 7 предлагает инженерам выбор на сетевом уровне: можно выбрать связь с установлением соединения или без него, а на транспортном уровне есть один протокол, который поддерживает связь только с установлением соединения.

Можно выделить четыре основных пункта, из-за которых критикуют эталонную модель сетевого взаимодействия:

  1. Несвоевременность.
  2. Неудачная технология.
  3. Неудачная реализация.
  4. Неудачная политика распространения.

Этим мы и ограничимся и перейдем к основным недостаткам модели TCP/IP. Во-первых, модель стека протоколов TCP/IP не проводит четких границ между службами, интерфейсами и протоколами, поэтому в модель TCP/IP не всегда легко вписать новые протоколы и технологии. Второй недостаток заключается в том, что при помощи модели TCP/IP можно описать не все сети и не все технологии, например, вы не сможете достаточно полно описать технологию Bluetooth при помощи модели TCP/IP .

Канальный уровень модели TCP/IP на самом деле никакой не уровень и всё, что было описано выше про канальный уровень модели TCP/IP в большей степени подходит для физического и уровня передачи данных модели OSI 7, а не для первого уровня модели TCP/IP. На самом деле канальный уровень модели TCP/IP – это даже не уровень, а интерфейс, позволяющий взаимодействовать сетевому уровню с физической средой передачи данных из этого следует и то, что здесь нет различия между физическим уровнем и канальной логикой, хотя это абсолютно разные вещи.

Итак, из всех вышеописанных недостатков модели TCP/IP для инженеров, обеспечивающих передачу данных по сети, самым важным недостатком является то, что фундаментальный, то есть первый уровень этой модели вовсе никакой не уровень, а интерфейс, а также то, что нет деления на физику и канальную логику. Исходя из этого, а также из того, что модель TCP/IP используется для построения большинства компьютерных сетей, мы можем сделать свою компромиссную модель, которая устранит вышеописанный недостаток и будет удобной для сетевого инженера, эта модель показана на Рисунке 1.15.4.

Итак, эта модель разделяет уровень доступа к сети на два уровня: физический уровень, описывающий физические параметры среды передачи данных и ее свойства, и канальный уровень, который призван решать задачу объединения бит в кадры, логическое деление ресурсов физической среды, объединение нескольких компьютеров в сеть и надежность передачи данных. Естественно, что эта модель в качестве протоколов должна использовать протоколы модели TCP/IP.

Ее сетевой уровень должен решать задачи объединения нескольких небольших сетей в одну большую. А транспортный уровень должен увеличивать , организуя туннельное соединение между конечными участниками обмена данных. Ну а на самом верхнем уровне решаются задачи взаимодействия пользователей с ПК и компьютерной сетью.

1.15.8 Выводы

Подводя итог разговору у модели передачи данных, которая называется модель стека протоколов TCP/IP следует отметить, что в отличие от модели OSI 7, данная модель сформировалась уже после того, как были разработаны и введены в реальный мир ее протоколы и на данные момент большинство компьютерных сетей работают именно по модели стека протоколов TCP/IP . У этой модели есть два минуса: первый заключается в том, что здесь нет четкой границы между протоколом и службой, вторым недостатком является то, что в модели TCP/IP нет явного деления на канальный и физический уровень, здесь канальный уровень представляет собой интерфейс между сетевым уровнем и средой передачи данных.

Второй минус легко исправить самостоятельно, выработав для себя компромиссную модель передачи данных, где есть деление на физический и канальный уровень. Также стоит сказать, что для сетевого инженера наличие на верху модели TCP/IP только прикладного уровня – это скорее плюс, чем минус, формально говоря, в задачи сетевого инженера не входит настройка пользовательских приложений, работающих с сетью, это должны делать системные администраторы, задача сетевого инженера заключает в том, чтобы обеспечить канал связи между точкой А и Б, то есть выполнить необходимые настройки на оборудование, которое работает на уровня от физического до транспортного, модель TCP/IP это демонстрирует четко.

Еще в этой теме мы разобрались с тем, что происходит на каждом из важных для нас уровней модели TCP/IP и посмотрели, что происходит с данными, когда они переходят с одного уровня на другой, нужно запомнить этот принцип, так как его мы уже увидим в действие, когда будем разговаривать о принципах работы роутеров, тогда мы увидим, что роутер, оперирующий IP-пакетами, для того чтобы до них добраться, распаковывает Ethernet кадр, а после обработки IP пакета роутер его упаковывает в кадр и отправляет дальше.

В основе работы глобальной сети Интернет лежит набор (стек) протоколов TCP/IP. Но эти термины лишь на первый взгляд кажутся сложными. На самом деле стек протоколов TCP/IP - это простой набор правил обмена информацией, и правила эти на самом деле вам хорошо известны, хоть вы, вероятно, об этом и не догадываетесь. Да, все именно так, по существу в принципах, лежащих в основе протоколов TCP/IP, нет ничего нового: все новое - это хорошо забытое старое.

Человек может учиться двумя путями:

  1. Через тупое формальное зазубривание шаблонных способов решения типовых задач (чему сейчас в основном и учат в школе). Такое обучение малоэффективно. Наверняка вам приходилось наблюдать панику и полную беспомощность бухгалтера при смене версии офисного софта - при малейшем изменении последовательности кликов мышки, требуемых для выполнения привычных действий. Или приходилось видеть человека, впадающего в ступор при изменении интерфейса рабочего стола?
  2. Через понимание сути проблем, явлений, закономерностей. Через понимание принципов построения той или иной системы. В этом случае обладание энциклопедическими знаниями не играет большой роли - недостающую информацию легко найти. Главное - знать, что искать. А для этого необходимо не формальное знание предмета, а понимание сути.

В этой статье я предлагаю пойти вторым путем, так как понимание принципов, лежащих в основе работы Интернета, даст вам возможность чувствовать себя в Интернете уверенно и свободно - быстро решать возникающие проблемы, грамотно формулировать проблемы и уверенно общаться с техподдержкой.

Итак, начнем.

Принципы работы интернет-протоколов TCP/IP по своей сути очень просты и сильно напоминают работу нашей советской почты.

Вспомните, как работает наша обычная почта. Сначала вы на листке пишете письмо, затем кладете его в конверт, заклеиваете, на обратной стороне конверта пишете адреса отправителя и получателя, а потом относите в ближайшее почтовое отделение. Далее письмо проходит через цепочку почтовых отделений до ближайшего почтового отделения получателя, откуда оно тетей-почтальоном доставляется до по указанному адресу получателя и опускается в его почтовый ящик (с номером его квартиры) или вручается лично. Все, письмо дошло до получателя. Когда получатель письма захочет вам ответить, то он в своем ответном письме поменяет местами адреса получателя и отправителя, и письмо отправиться к вам по той же цепочке, но в обратном направлении.

На конверте письма будет написано примерно следующее:

Адрес отправителя: От кого : Иванов Иван Иванович Откуда : Ивантеевка, ул. Большая, д. 8, кв. 25 Адрес получателя: Кому : Петров Петр Петрович Куда : Москва, Усачевский переулок, д. 105, кв. 110

Теперь мы готовы рассмотреть взаимодействие компьютеров и приложений в сети Интернет (да и в локальной сети тоже). Обратите внимание, что аналогия с обычной почтой будет почти полной.

Каждый компьютер (он же: узел, хост) в рамках сети Интернет тоже имеет уникальный адрес, который называется IP-адрес (Internet Protocol Address), например: 195.34.32.116. IP адрес состоит из четырех десятичных чисел (от 0 до 255), разделенных точкой. Но знать только IP адрес компьютера еще недостаточно, т.к. в конечном счете обмениваются информацией не компьютеры сами по себе, а приложения, работающие на них. А на компьютере может одновременно работать сразу несколько приложений (например почтовый сервер, веб-сервер и пр.). Для доставки обычного бумажного письма недостаточно знать только адрес дома - необходимо еще знать номер квартиры. Также и каждое программное приложение имеет подобный номер, именуемый номером порта. Большинство серверных приложений имеют стандартные номера, например: почтовый сервис привязан к порту с номером 25 (еще говорят: «слушает» порт, принимает на него сообщения), веб-сервис привязан к порту 80, FTP - к порту 21 и так далее.

Таким образом имеем следующую практически полную аналогию с нашим обычным почтовым адресом:

"адрес дома" = "IP компьютера" "номер квартиры" = "номер порта"

В компьютерных сетях, работающих по протоколам TCP/IP, аналогом бумажного письма в конверте является пакет , который содержит собственно передаваемые данные и адресную информацию - адрес отправителя и адрес получателя, например:

Адрес отправителя (Source address): IP: 82.146.49.55 Port: 2049 Адрес получателя (Destination address): IP: 195.34.32.116 Port: 53 Данные пакета: ...

Конечно же в пакетах также присутствует служебная информация, но для понимания сути это не важно.

Обратите внимание, комбинация: "IP адрес и номер порта" - называется "сокет" .

В нашем примере мы с сокета 82.146.49.55:2049 посылаем пакет на сокет 195.34.32.116:53, т.е. пакет пойдет на компьютер, имеющий IP адрес 195.34.32.116, на порт 53. А порту 53 соответствует сервер распознавания имен (DNS-сервер), который примет этот пакет. Зная адрес отправителя, этот сервер сможет после обработки нашего запроса сформировать ответный пакет, который пойдет в обратном направлении на сокет отправителя 82.146.49.55:2049, который для DNS сервера будет являться сокетом получателя.

Как правило взаимодействие осуществляется по схеме «клиент-сервер»: "клиент" запрашивает какую-либо информацию (например страницу сайта), сервер принимает запрос, обрабатывает его и посылает результат. Номера портов серверных приложений общеизвестны, например: почтовый SMTP сервер «слушает» 25-й порт, POP3 сервер, обеспечивающий чтение почты из ваших почтовых ящиков «слушает» 110-порт, веб-сервер - 80-й порт и пр.

Большинство программ на домашнем компьютере являются клиентами - например почтовый клиент Outlook, веб-обозреватели IE, FireFox и пр.

Номера портов на клиенте не фиксированные как у сервера, а назначаются операционной системой динамически. Фиксированные серверные порты как правило имеют номера до 1024 (но есть исключения), а клиентские начинаются после 1024.

Повторение - мать учения: IP - это адрес компьютера (узла, хоста) в сети, а порт - номер конкретного приложения, работающего на этом компьютере.

Однако человеку запоминать цифровые IP адреса трудно - куда удобнее работать с буквенными именами. Ведь намного легче запомнить слово, чем набор цифр. Так и сделано - любой цифровой IP адрес можно связать с буквенно-цифровым именем. В результате например вместо 82.146.49.55 можно использовать имя А преобразованием доменного имени в цифровой IP адрес занимается сервис доменных имен - DNS (Domain Name System).

Рассмотрим подробнее, как это работает. Ваш провайдер явно (на бумажке, для ручной настройки соединения) или неявно (через автоматическую настройку соединения) предоставляет вам IP адрес сервера имен (DNS). На компьютере с этим IP адресом работает приложение (сервер имен), которое знает все доменные имена в Интернете и соответствующие им цифровые IP адреса. DNS-сервер «слушает» 53-й порт, принимает на него запросы и выдает ответы, например:

Запрос от нашего компьютера: "Какой IP адрес соответствует имени www.сайт?" Ответ сервера: "82.146.49.55."

Теперь рассмотрим, что происходит, когда в своем браузере вы набираете доменное имя (URL) этого сайта () и, нажав , в ответ от веб-сервера получаете страницу этого сайта.

Например:

IP адрес нашего компьютера: 91.76.65.216 Браузер: Internet Explorer (IE), DNS сервер (стрима): 195.34.32.116 (у вас может быть другой), Страница, которую мы хотим открыть: www.сайт.

Набираем в адресной строке браузера доменное имя и жмем . Далее операционная система производит примерно следующие действия:

Отправляется запрос (точнее пакет с запросом) DNS серверу на сокет 195.34.32.116:53. Как было рассмотренно выше, порт 53 соответствует DNS-серверу - приложению, занимающемуся распознаванием имен. А DNS-сервер, обработав наш запрос, возвращает IP-адрес, который соответствует введенному имени.

Диалог примерно следующий:

Какой IP адрес соответствует имени www.сайт ? - 82.146.49.55 .

Далее наш компьютер устанавливает соединение с портом 80 компьютера 82.146.49.55 и посылает запрос (пакет с запросом) на получение страницы . 80-й порт соответствует веб-серверу. В адресной строке браузера 80-й порт как правило не пишется, т.к. используется по умолчанию, но его можно и явно указать после двоеточия - .

Приняв от нас запрос, веб-сервер обрабатывает его и в нескольких пакетах посылает нам страницу в на языке HTML - языке разметки текста, который понимает браузер.

Наш браузер, получив страницу, отображает ее. В результате мы видим на экране главную страницу этого сайта.

Зачем эти принципы надо понимать?

Например, вы заметили странное поведение своего компьютера - непонятная сетевая активность, тормоза и пр. Что делать? Открываем консоль (нажимаем кнопку «Пуск» - «Выполнить» - набираем cmd - «Ок»). В консоли набираем команду netstat -an и жмем . Эта утилита отобразит список установленных соединений между сокетами нашего компьютера и сокетами удаленных узлов. Если мы видим в колонке «Внешний адрес» какие-то чужие IP адреса, а через двоеточие 25-й порт, что это может означать? (Помните, что 25-й порт соответствует почтовому серверу?) Это означает то, что ваш компьютер установил соединение с каким-то почтовым сервером (серверами) и шлет через него какие-то письма. И если ваш почтовый клиент (Outlook например) в это время не запущен, да если еще таких соединений на 25-й порт много, то, вероятно, в вашем компьютере завелся вирус, который рассылает от вашего имени спам или пересылает номера ваших кредитных карточек вкупе с паролями злоумышленникам.

Также понимание принципов работы Интернета необходимо для правильной настройки файерволла (проще говоря брандмауэра:)). Эта программа (которая часто поставляется вместе с антивирусом), предназначенна для фильтрации пакетов - "своих" и "вражеских". Своих пропускать, чужих не пущать. Например, если ваш фаерволл сообщает вам, что некто хочет установить соединение с каким-либо портом вашего компьютера. Разрешить или запретить?

Ну и самое главное - эти знания крайне полезны при общении с техподдержкой .

Напоследок приведу список портов, с которыми вам, вероятно, придется столкнуться:

135-139 - эти порты используются Windows для доступа к общим ресурсам компьютера - папкам, принтерам. Не открывайте эти порты наружу, т.е. в районную локальную сеть и Интернет. Их следует закрыть фаерволлом. Также если в локальной сети вы не видите ничего в сетевом окружении или вас не видят, то вероятно это связано с тем, что фаерволл заблокировал эти порты. Таким образом для локальной сети эти порты должны быть открыты, а для Интернета закрыты. 21 - порт FTP сервера. 25 - порт почтового SMTP сервера. Через него ваш почтовый клиент отправляет письма. IP адрес SMTP сервера и его порт (25-й) следует указать в настройках вашего почтового клиента. 110 - порт POP3 сервера. Через него ваш почтовый клиент забирает письма из вашего почтового ящика. IP адрес POP3 сервера и его порт (110-й) также следует указать в настройках вашего почтового клиента. 80 - порт WEB -сервера. 3128, 8080 - прокси-серверы (настраиваются в параметрах браузера).

Несколько специальных IP адресов:

127.0.0.1 - это localhost, адрес локальной системы, т.е. локальный адрес вашего компьютера. 0.0.0.0 - так обозначаются все IP-адреса. 192.168.xxx.xxx - адреса, которые можно произвольно использовать в локальных сетях, в глобальной сети Интернет они не используются. Они уникальны только в рамках локальной сети. Адреса из этого диапазона вы можете использовать по своему усмотрению, например, для построения домашней или офисной сети.

Что такое маска подсети и шлюз по умолчанию (роутер, маршрутизатор)?

(Эти параметры задаются в настройках сетевых подключений).

Все просто. Компьютеры объединяются в локальные сети. В локальной сети компьютеры напрямую «видят» только друг друга. Локальные сети соединяются друг с другом через шлюзы (роутеры, маршрутизаторы). Маска подсети предназначена для определения - принадлежит ли компьютер-получатель к этой же локальной сети или нет. Если компьютер-получатель принадлежит этой же сети, что и компьютер-отправитель, то пакет передается ему напрямую, в противном случае пакет отправляется на шлюз по умолчанию, который далее, по известным ему маршрутам, передает пакет в другую сеть, т.е. в другое почтовое отделение (по аналогии с советской почтой).

Напоследок рассмотрим что же означают непонятные термины:

TCP/IP - это название набора сетевых протоколов. На самом деле передаваемый пакет проходит несколько уровней. (Как на почте: сначала вы пишете писмо, потом помещаете в конверт с адресом, затем на почте на нем ставится штамп и т.д.).

IP протокол - это протокол так называемого сетевого уровня. Задача этого уровня - доставка ip-пакетов от компьютера отправителя к компьютеру получателю. По-мимо собственно данных, пакеты этого уровня имеют ip-адрес отправителя и ip-адрес получателя. Номера портов на сетевом уровне не используются. Какому порту, т.е. приложению адресован этот пакет, был ли этот пакет доставлен или был потерян, на этом уровне неизвестно - это не его задача, это задача транспортного уровня.

TCP и UDP - это протоколы так называемого транспортного уровня. Транспортный уровень находится над сетевым. На этом уровне к пакету добавляется порт отправителя и порт получателя.

TCP - это протокол с установлением соединения и с гарантированной доставкой пакетов. Сначала производится обмен специальными пакетами для установления соединения, происходит что-то вроде рукопожатия (-Привет. -Привет. -Поболтаем? -Давай.). Далее по этому соединению туда и обратно посылаются пакеты (идет беседа), причем с проверкой, дошел ли пакет до получателя. Если пакет не дошел, то он посылается повторно («повтори, не расслышал»).

UDP - это протокол без установления соединения и с негарантированной доставкой пакетов. (Типа: крикнул что-нибудь, а услышат тебя или нет - неважно).

Над транспортным уровнем находится прикладной уровень. На этом уровне работают такие протоколы, как http , ftp и пр. Например HTTP и FTP - используют надежный протокол TCP, а DNS-сервер работает через ненадежный протокол UDP.

Как посмотреть текущие соединения?

Текущие соединения можно посмотреть с помощью команды

Netstat -an

(параметр n указывает выводить IP адреса вместо доменных имен).

Запускается эта команда следующим образом:

«Пуск» - «Выполнить» - набираем cmd - «Ок». В появившейся консоли (черное окно) набираем команду netstat -an и жмем . Результатом будет список установленных соединений между сокетами нашего компьютера и удаленных узлов.

Например получаем:

Активные подключения

Имя Локальный адрес Внешний адрес Состояние
TCP 0.0.0.0:135 0.0.0.0:0 LISTENING
TCP 91.76.65.216:139 0.0.0.0:0 LISTENING
TCP 91.76.65.216:1719 212.58.226.20:80 ESTABLISHED
TCP 91.76.65.216:1720 212.58.226.20:80 ESTABLISHED
TCP 91.76.65.216:1723 212.58.227.138:80 CLOSE_WAIT
TCP 91.76.65.216:1724 212.58.226.8:80 ESTABLISHED
...

В этом примере 0.0.0.0:135 - означает, что наш компьютер на всех своих IP адресах слушает (LISTENING) 135-й порт и готов принимать на него соединения от кого угодно (0.0.0.0:0) по протоколу TCP.

91.76.65.216:139 - наш компьютер слушает 139-й порт на своем IP-адресе 91.76.65.216.

Третья строка означает, что сейчас установлено (ESTABLISHED) соединение между нашей машиной (91.76.65.216:1719) и удаленной (212.58.226.20:80). Порт 80 означает, что наша машина обратилась с запросом к веб-серверу (у меня, действительно, открыты страницы в браузере).

В следующих статьях мы рассмотрим, как применять эти знания, например



Статьи по теме