Оптоволоконные линии связи. Что такое волс

Нам задают все больше вопросов о реализации, принципах работы этой сети и так далее.

Поэтому в ближайшее время мы опубликуем цикл статей о технологии PON, более подробно разбирающих эти нюансы. И начнем с основного: что это, чем хороши сети PON, и почему украинские поставщики, в основном, предлагают оборудование GEPON, а не GPON или EPON?

Что такое PON-технология?

Оптическое волокно предоставляет возможность передавать данные большого объема и с большой скоростью, в том числе такие требовательные к стабильности сигнала, как голос и видео. И это хорошо. Но оптический кабель стоит дорого, и выделять для каждого абонента отдельное волокно - непосильные траты для большинства провайдеров. И это плохо. Мало того, многие абоненты не используют весь потенциал выделенного оптоволокна, и большая его часть "простаивает".

Поэтому была разработана PON-технология - для максимально эффективного и экономного использования возможностей оптоволоконной сети. Основным преимуществом Passive optical network является организация подключения нескольких десятков абонентов к сети по ОДНОМУ оптоволокну . Реализовано это с помощью разделения передачи пакетов во времени (протоколы TDM и TDMA), а также разделения приема и передачи данных в разных волновых диапазонах.

Виды PON. Что выбрать: GEPON или GPON?

О прародителях современной PON - технологиях APON и BPON - уже нет смысла даже говорить. Низкая поддерживаемая скорость вкупе с довольно высокой ценой развертывания сети на их основе, - причина их ухода в прошлое. То же касается EPON, с ее 100 Мб/сек.

Украинскому провайдеру остается выбрать между GEPON и GPON . Несмотря на похожие названия и высокую скорость, это разные стандарты. Картинка ниже это иллюстрирует: если в GEPON пакеты данных передаются без особых изменений, то в GPON это происходит сложнее, с двойной "упаковкой" в кадры GEM и GTC. Кроме того, в GPON используются ATM-ячейки, которых нет в GEPON.

GPON поддерживает скорость в 2.5 Гбит, предлагает эффективную передачу TDMA-трафика и имеет несколько других преимуществ. Но все они перечеркиваются стоимостью оборудования (гораздо выше, чем в GEPON) и более сложной его настройкой. Лишь небольшой сегмент провайдеров, обслуживающий крупных серьезных клиентов или строящий огромные разветвленные сети, может позволить себе такую сеть.

Большинство украинских телекоммуникационных компаний выбирают GEPON:

  • пропускная способность такой сети отвечает стандартным современным требованиям (1 Гбит);
  • оборудование для GEPON дешевле , чем для GPON и легче настраивается;
  • по количеству подключаемых абонентов на 1 порт OLT (64) и максимальному радиусу сети (20 км) GEPON не уступает GPON.

Существует также технология 10GEPON, которая обещает скорость в 10 ГБит, но ее разработки все еще ведутся (с 2009 года).

Где можно протянуть PON (GEPON)?

Сети на основе PON-технологии универсальны. Они могут использоваться даже в тех условиях, когда невыгодно или нереализуемо организовать обычную оптоволоконную FTTH сеть или пробросить Wi-Fi линки.

Возьмем, к примеру, стандартную сеть на основе оптики, когда для каждого абонента выделяется отдельное волокно. Мы уже обсудили выше, что это невыгодно из-за стоимости самого кабеля. Добавьте к этому непременный атрибут такой сети - активное оборудование. Необходимо:

  • Купить свитчи и поставить в каждое место доступа, плюс предусмотреть более мощный коммутатор на агрегацию. Цена на свитчи (даже самые непритязательные) на несколько десятков абонентов начинается где-то от 400 долларов.
  • Оснастить SFP-модулями (они обычно не идут в комплекте к коммутаторам), медиаконвертерами и т. п.
  • Где-то разместить, и это "где-то" должно быть теплым сухим помещением.
  • Защитить от вандалов и воров (монтажный запирающийся шкаф или бокс).
  • Позаботиться об электропитании и о резервном питании (или UPS), на случай отключения электроэнергии.
  • Обеспечить настройку, мониторинг и сопровождение всего активного оборудования.

И если в условиях городской застройки это все хоть как-то реализуемо, то в частном секторе - маловероятно.

Для частного сектора отличное решение - Wi-Fi сети. Но здесь тоже могут быть камни преткновения: плотно "заселенный" эфир, отсутствие прямой видимости и тому подобное, когда выходом становится GEPON.

И кабельное телевидение в придачу

Подключение интернета по PON-технологии, помимо экономии на стоимости оптического волокна, имеет массу преимуществ:

Закупка активного оборудования сводится к минимуму. Фактически, вам нужно приобрести лишь одну головную станцию - OLT и абонентские терминалы-модемы (ONU). Причем цена последних может быть компенсирована абонентом в стоимости подключения.

Настройка и администрирование необходима будет только для OLT.

На всей протяженности GEPON используются только пассивные элементы - сплиттеры, которые не нуждаются в подаче питания и отапливаемом помещении.

В PON эффективно используется пропускная способность сети. Так как она является общей, то при бездействии одного или нескольких абонентов и снижении нагрузки на канал скорость возрастает у всех . Также пропорционально она и падает, однако ресурсов пропускной способности вполне достаточно даже при самой большой загрузке. Если мы поделим гигабит на 64 подключенных абонента (максимум), то каждому получается минимум 16 Мбит !

И дополнительный бонус - на основе GEPON можно предоставлять абонентам кабельное телевидение, используя ту же сетевую инфраструктуру. Передача данных ТВ ведется на другой длине волны.

Не все еще знают, что такое ВОЛС. В оптических линиях связи световой сигнал транспортируется внутри волокон. Оптическо - волоконная система связи обеспечивает соединение для передачи информации между двумя точками.

Эти компоненты служат основой любой волоконной оптики, начиная с простой одноканальной системы. Но существуют и более сложные системы, которые профессионально прокладывают и монтируют специалисты специлизированных компаний, обладающие профессиональным оборудованием и рядом сертификатов из https://kabelnieseti.ru/services/volokonno-opticheskie-linii-svyazi/ . Передаваемая информация является цифровой (в большинстве случаев), что делает оптоволоконную систему очень универсальной и относительно нечувствительной, например, для нелинейных искажений. Чтобы разобраться, что такое волоконно-оптические линии связи, разберем основные понятия.

Существуют различные форматы модуляции, то есть разные методы кодирования информации. Например, простой, без возврата к 0 (NRZ), формат передает последующие биты, отсылая сигналы либо высокой, либо низкой оптической мощности, без пробелов между соседними битами, и дополнительными средствами для синхронизации. В противоположность этому, формат нулевого возврата (RZ) легко самосинхронизируется путём возврата к состоянию покоя после каждого бита, но он требует более высокой оптической передачи полосы пропускания для тех же скоростей передачи данных.

Помимо деталей оборудования и оптической пропускной способности, связанной с эффективностью модуляции, форматы передачи также различаются с точки зрения их чувствительности к альтернативному шуму и перекрестным наводкам.

Передатчик сигналов ВОЛС

Передатчик преобразует электронный входной сигнал в модулированный световой пучок. Информация может быть закодирована например, через:

  • оптическую мощность (интенсивность),
  • оптическую фазу,
  • поляризацию;

Модуляция интенсивности является наиболее распространенным вариантом. Оптическая длина волны формируется, как правило, в одном из так называемых телекоммуникационных окон. Типичный передатчик основан на одномодовом лазерном диоде (обычно VCSEL или DFB), который может быть либо непосредственно модулированным с помощью тока DML (= непосредственно модулированный лазер), или с помощью внешнего оптического модулятора.

Прямая модуляция является более простым вариантом, и может работать на скоростях передачи сигналов до 10 Гбит/сек или даже выше. Тем не менее, варьируется плотность носителей в лазерном диоде, а затем приводится к той или иной мгновенной частоте таким образом, чтобы искажения сигнала были в виде частотной модуляции. Это делает сигнал более чувствительным к влиянию хроматической дисперсии при передаче на большие расстояния. Таким образом, внешняя модуляция обычно предпочтительна для комбинации высокоскоростной передачи данных (например, от 10 до 40 Гбит/сек) с большими расстояниями передачи (много километров). Лазер может работать безостановочно, и искажения сигнала сводятся к минимуму.

Для получения еще более высокоскоростной передачи сигналов в 1-канальных системах, мультиплексирование с временным делением каналов может использоваться в системах с четырьмя каналами по 40 Гбит/сек, каждый из которых используется с чередованием по времени таким образом, чтобы получить суммарную скорость 160 Гбит/сек. Но это технологии будущего. Для получения высокоскоростной передачи данных с форматами возврата к нулю, может быть выгодно использовать импульсный источник (например, лазер, излучающий солитонные импульсы) в сочетании с модулятором интенсивности. Это снижает уровень требований к пропускной способности модулятора, так как коэффициент пропускания модулятора эволюционирует между импульсами.

Для получения высокоскоростной передачи данных, передатчик должен отвечать ряду требований. Важно достичь высокого коэффициента экстинкции, должен быть низкий джиттер синхронизации, низкий уровень шума интенсивности и точно контролируемая тактовая частота. Конечно, передатчик данных должен работать стабильно и надежно с минимальным вмешательством оператора.

Оптическое волокно

1-модовые волокна применяются в случае передачи сигналов на средние или большие расстояния, но система может быть и с многомодовым волокном на коротких расстояния. В последнем случае, межмодовая дисперсия может ограничить дальность или скорость передачи. Так называемые дуплексные каналы обеспечивают соединение для передачи данных в обоих направлениях.

Каналы широкополосного волокна могут содержать волокна с усилителями в определенных точках (сосредоточенными усилителями), чтобы предотвратить уровень мощности от падения до слишком низкого уровня. В качестве альтернативы, можно использовать распределенный усилитель, реализованный с самого передающего волокна, путем впрыскивания дополнительного мощного пучка накачки (как правило, в конце приемника).

Могут использоваться средства для компенсации дисперсии (противодействующие хроматической дисперсии волокна эффекты), а также для регенерации сигнала. Последнее означает, что не только уровень мощности, но и качество сигнала (например, длительность импульса и времени) восстанавливаются. Это достижимо либо с обработкой самого оптического сигнала, либо путем обнаружения сигнала в электронном виде, применения некоторой оптической обработки сигналов, и повторной передачи. Таковы основные принципы работы волоконно-оптические линии связи.

Что такое приёмник ВОЛС?

Приемник содержит некоторый тип быстрого фотодетектора, как правило, это фотодиод и подходящая высокоскоростная электроника для усиления слабого сигнала и извлечения цифровых данных. Лавинные фотодиоды могут использоваться для особо высокой чувствительности. Чувствительность приемника ограничена шумом, как правило, электронного происхождения. Однако следует отметить, что сам по себе оптический сигнал сопровождается оптическим шумом, например, от усилителя. Такой оптический шум вводит ограничения, которые не могут быть удалены с помощью какой-то особой конструкции приемника.

Интенсивное развитие отрасли телекоммуникаций, обусловленное потребностями в передаче все больших объемов информации, привело к необходимости совершенствования сетей связи, в том числе сетей абонентского доступа. На сегодняшний день можно наблюдать этап конвергенции сетей связи. В конвергентных сетях для предоставления различных видов услуг используются единые мультисервисные сети, ориентированные на пакетных трафик. Предоставление качественных широкополосных услуг требует наличия у провайдера высокоскоростной сети абонентского доступа.

В качестве среды передачи для проводных сетей абонентского доступа все чаще используют волоконную оптику. Оптические кабели в отличие от электрических имеют ряд преимуществ: высокая пропускная способность, малое ослабление сигнала, высокая защищенность от внешних электромагнитных помех, малые размеры и масса. Среди оптических технологий доступа наиболее востребованы группа технологий FTTx. Технологии FTTx подразделяются по сетевому построению на активные оптические сети AON и пассивные оптические сети PON. Главное отличие этих технологий состоит в том, что пассивная оптическая сеть в отличие от активной не требует электропитания для промежуточных узлов абонентской линии. Вследствие этого пассивная оптическая сеть будет надежней и дешевле в эксплуатации. Другими немаловажными преимуществами являются малые затраты на строительство сети и возможность ее постепенного наращивания. Такие преимущества позволят расширять существующую сеть и привлекать новых абонентов. Таким образом технология PON представляет особый интерес в плане расширения сферы применения широкополосных сетей.

Оптические сети доступа имеют различные варианты построения. Топология «звезда» со связями точка-точка (P2P, point-to-point) предполагает подключение каждого абонента отдельным волокном к узлу доступа. Топология «звезда» применяется при плотном расположении абонентов в районе АТС. Данная топология характеризуется минимальным количество оптических разветвителей и единственным местом их установки. Очевидным недостатком данной топологии является наличие большого количества волокон и оптических передатчиков. Достоинства данной топологии: удобство в обслуживании, проведении эксплуатационных измерений и обнаружения места повреждения линии. Данная топология характеризуется высокой надежностью, так как разрыв одного из волокон не повлияет на работу всей сети.

Топологии типа «дерево» применяется при разнесенным расположении абонентов. Оптимальное распределение мощности между различными ветвями решается подбором коэффициентов деления оптических разветвителей. Древообразная топология гибкая с точки зрения потенциального развития и расширения абонентской базы. В зависимости от необходимости наличия электропитания для промежуточных узлов различают топологии «дерево с активными узлами» и «дерево с пассивными узлами». У каждой из топологий есть свои достоинства и недостатки.
При использовании топологии «дерево с активными узлами» каждый абонент подключается к коммутатору, который в свою очередь соединяется волокном с узлом доступа. Коммутатор является активным оборудованием, то есть требующим электропитания. При отсутствии электропитания абоненты, подключенные к коммутатору, потеряют доступ к сети. Однако это решение хорошо вписывается в рамки стандарта Ethernet и является относительно дешевым.

Топология «дерево с пассивным оптическим разветвлением» со связями точка-многоточка (P2MP, point-to-multipoint) использует магистральное волокно, которое разделяется между всеми абонентами с помощью пассивного разветвителя (сплиттера). Каждый пользователь подключается к разветвителю отельным волокном. К одному порту узла доступа можно подключить целый сегмент древовидной архитектуры, который охватывает десятки абонентов. На промежуточных узлах устанавливаются полностью пассивные разветвители, не требующие электропитания и обслуживания. К преимуществам архитектуры PON можно отнести отсутствие необходимости электропитания на промежуточных узлах, высокая масштабируемость сети, экономия волокон и оптических передатчиков в центральном узле. Масштабируемость сети позволяет подключать новых абонентов так много, как это позволяет оптический бюджет мощности.

Принцип работы сети PON

Основой технологии PON является логическая структура «точка-многоточка» P2MP. К одному порту центрального узла можно подключить целый волоконно-оптический сегмент древовидной архитектуры, охватывающий множество абонентов. На промежуточных узлах дерево устанавливаются промежуточные пассивные элементы – сплиттеры. Сплиттеры предназначены для деления мощности оптического сигнала в заданном соотношении.

Назначение блоков схемы:

  • Центральный узел OLT – сетевое устройство, которое располагается в узле доступа, принимает данные со стороны магистральный сетей через интерфейсы SNI и формирует нисходящий поток к абонентам по дереву PON.
  • Абонентский узел ONT – сетевой устройство, которое располагается на стороне абонента, осуществляет прием и передачу данных к OLT на длинах волн 1550 нм и 1310 нм соответственно, конвертирует данные и передает их абонентам через интерфейсы UNI.
  • Сплиттер – пассивный оптический многополюсник, который распределяет поток оптического излучения в одном направлении и объединяет этот поток в обратном.

Главная идея архитектуры PON состоит в том, чтобы использовать всего один приемопередающий модуль в центральном узле OLT для передачи данных множеству абонентских узлов ONT и приема от них.

Количество абонентских узлов ONT, подключаемых к одному приемопередающему модулю OLT, зависит от бюджета мощности и максимальной скорости приемопередающей аппаратуры. Для передачи прямого (исходящего) потока от OLT к ONT используется длина волны 1550 нм. При передачи обратных (восходящих) потоков данных от абонентских узлов от ONT к OLT используется длина волны 1310 нм. Мультиплексоры WDM, встроенные в оборудование OLT и ONT, разделяют исходящие и восходящие потоки.

WDM – это мультиплексирование с разделение по длине волны. Данная технология позволяет объединить несколько информационных каналов по одному оптическому волокну. При этом для каждого из каналов выделяется своя частота. Технология WDM основана на том, что при передаче света на различных длинах волн, в волокне не возникает их взаимной интерференции. Каждая длина волны представляет один оптический канал в волокне. Исходящий поток является широковещательным – передается всем абонентам, подключенным к OLT. Каждый абонентский узел ONT для того, чтобы выделить из общего потока предназначенную ему информацию читает адресные поля. Абонентские узлы ведут передачу на одинаковой длине волны и для того, чтобы не возникали пересечения сигналов, они использует метод множественного доступа временным разделением TDMA. Каждый ONT имеет свое индивидуальное расписание по передаче данных с учетом поправки на задержку. Эту задачу решает протокол TDMA MAC.

Непосредственно в помещении абонента устанавливается оптический терминал ONT, который является одновременно домашним шлюзом доступа. При использовании унифицированного транспортного оптического терминала ONT, конфигурация транспортной составляющей не привязана к услугам. Таким образом, последующая конфигурация услуг будет осуществляться на домашнем шлюзе доступа.

При строительстве оптической сети используется двухкаскадная схема деления оптического сигнала. На станционной стороне устанавливается сплиттер с коэффициентом деления 1:2. В подъезде дома в оптическом распределительном шкафу устанавливается сплиттер с коэффициентом деления 1:32, обеспечивающей распределение оптического сигнала среди абонентов жилого здания. Стоит отметить, что домов с малым количеством абонентов используются другие схемы распределения оптического сигнала:

  • 1:4 – первый уровень, 1:16 – второй уровень
  • 1:8 – первый уровень, 1:8 – второй уровень

Технологии пассивных оптических сетей позволяют осуществить конвергенцию различных услуг. При использовании PON возможно предоставление услуг доступа в Интернет, телефонии, телевидения. Предоставление комплексных услуг реализуются с использованием абонентского оборудования. Для организации доступа к услугам NGN используется гибридная сервисная модель, представленная на рисунке.

На оборудовании абонента (PC) инициируется PPPoE-сессия. ONTнастроен в режиме работы моста. Маршрутизатор широкополосного удаленного доступа BRAS производит терминацию PPPoE-сессии. Для организации доступа в Интернет каждому виртуальному адаптеру PPPoE на оборудовании абонента присваивается свой публичный IP-адрес, который маршрутизируется в сети Интернет.

Для организации услуг Triple Play организуются три виртуальной частной сети VLAN. В пределах первого VLANпередается трафик доступа в Интернет. Второй VLAN передает трафик услуг IPTVи VoD. На третьем VLAN организуются передача услуг аналоговой и IP-телефонии. Абонентский терминал ONTсравнивает идентификатор порта, через который соединено абонентское оборудования и идентификатора, соответствующего VLAN.

Аналоговый телефон подключается по порту FXS, который эмулирует расширение интерфейса АТС. Для предотвращения широковещательной ретрансляции multicast трафика на оборудовании OLT включен процесс IGMP snooping. Шлюзы доступа IPTV и VOD, а также гибкий коммутатор Softswitch предоставляют доступ к услугам телевидения и телефонии соответственно.


Подписывайтесь на нашу


Волоконно-оптические ли нии связи (ВОЛС) – система в основе которой лежит оптоволоконный кабель, предназначена для передачи информации в оптическом (световом) диапазоне. В соответствии с ГОСТом 26599-85 термин ВОЛС заменен на ВОЛП (волоко́нно-опти́ческая ли́ния переда́чи), но в повседневном практическом обиходе по прежнему применяется термин ВОЛС, поэтому в данной статье мы будем придерживаться именно его.

Линии связи ВОЛС (если они корректно проведены) по сравнению со всеми кабельными системами отличаются очень высокой надежностью, отличным качеством связи, широкой пропускной способностью, значительно большей протяженностью без усиления и практически 100% защищенностью от электромагнитных помех. В основе системы лежит технология волоконной оптики – в качестве носителя информации используется свет, тип передаваемой информации (аналоговый или цифровой) не имеет значения. В работе преимущественно используется инфракрасный свет, средой передачи служит стекловолокно.

Область применения ВОЛС

Оптоволоконный кабель применяется для обеспечения связи и передачи информации уже более 40 лет, но из за высокой стоимости широко использоваться стал сравнительно недавно. Развитие технологий позволило сделать производство экономичней и стоимость кабеля доступней, а его технические характеристики и преимущества перед другими материалами быстро окупают все понесенные расходы.

В настоящее время, когда на одном объекте используется сразу комплекс слаботочных систем (компьютерная сеть, СКУД, видеонаблюдение, охранная и пожарная сигнализации, охрана периметра, телевидение и др.), обойтись без применения ВОЛС не возможно. Только использование оптоволоконного кабеля делает возможным одновременное применение всех этих систем, обеспечивает корректную стабильную работу и выполнение их функций.

ВОЛС все чаще применяется как основополагающая система при разработке и монтаже , в особенности для многоэтажных зданий, зданий большой протяженности и при объединении группы объектов. Только Волоконно-оптические кабели могут обеспечить соответствующий объем и скорость передачи информации. На основе оптоволокна могут быть реализованы все три подсистемы , в подсистеме внутренних магистралей оптические кабели применяются одинаково часто с кабелями из витых пар, а в подсистеме внешних магистралей они играют доминирующую роль. Различают оптоволоконный кабель для внешней (outdoor cables) и внутренней (indoor cables) прокладки, а так же соединительные шнуры для коммуникаций горизонтальной разводки, оснащения отдельных рабочих мест, объединения зданий.

Не смотря на относительно высокую стоимость, применение оптоволокна становится все более оправдано и находит все более широкое применение.

Преимущества волоконно-оптических линий связи (ВОЛС ) перед традиционными «металлическими» средствами передачи:

  • Широкая полоса пропускания;
  • Незначительное ослабление сигнала, например применительно к сигналу 10МГц оно составит 1,5 дБ/км по сравнению с 30дБ/км для коаксиального кабеля RG6;
  • Исключена возможность возникновения «земляных петель», так как оптоволокно является диэлектриком и создает электрическую (гальваническую) изоляцию между передающим и принимающим концом линии;
  • Высокая надёжность оптической среды: оптические волокна не окисляются, не намокают, не подвержены электромагнитному воздействию
  • Не вызывает помех в соседних кабелях или в других оптоволоконных кабелях, так как носителем сигнала является свет и он полностью остается внутри оптоволоконного кабеля;
  • Стекловолокно абсолютно не чувствительно к внешним сигналам и электромагнитным помехам (ЭМП), не имеет значения рядом с каким блоком питания проходит кабель (110 В, 240 В, 10 000 В переменного тока) или совсем рядом от мегаватного передатчика. Удар молнии на расстоянии 1 см. от кабеля не даст ни каких наводок и не отразится на работе системы;
  • Информационная безопасность - информация по оптическому волокну передаётся «из точки в точку» и подслушать или изменить ее можно только путем физического вмешательства в линию передачи
  • Оптоволоконный кабель легче и миниатюрней – его удобней и проще укладывать чем электрический кабель такого же диаметра;
  • Сделать ответвление кабеля без повреждения качества сигнала не возможно. Любое вмешательство в систему сразу обнаруживается на принимающем конце линии, это особенно важно для систем обеспечения безопасности и видеонаблюдения;
  • Пожаро- и взрывобезопасность при изменении физических и химических параметров
  • Стоимость кабеля снижается с каждым днем, его качество и возможности начинают превалировать над затратами на построение слаботочных на базе ВОЛС

Идеальных и безупречных решений не существует, как и любая система, ВОЛС имеет свои недостатки:

  • Хрупкость стекловолокна – при сильном изгибании кабеля возможна поломка волокон или их замутнение из-за возникновения микротрещин. Для устранения и минимизации этих рисков применяются усиливающие кабель конструкции и оплетки. При монтаже кабеля необходимо соблюдать рекомендации производителя (где, в частности, нормируется минимально допустимый радиус изгиба);
  • Сложность соединения в случае разрыва – требуется специальный инструмент и квалификация исполнителя;
  • Сложная технология изготовления, как самого волокна, так и компонентов ВОЛС;
  • Сложность преобразования сигнала (в интерфейсном оборудовании);
  • Относительная дороговизна оптического оконечного оборудования. Однако, оборудование является дорогим в абсолютных цифрах. Соотношение цены и пропускной способности для ВОЛС лучше, чем для других систем;
  • Замутнение волокна вследствие радиационного облучения (однако, существуют легированные волокна с высокой радиационной стойкостью).

Монтаж систем ВОЛС требует от исполнителя соответствующего уровня квалификации, так как концевая заделка кабеля производится специальными инструментами, с особой точностью и мастерством в отличии от других средств передачи. Настройки маршрутизации и переключения сигналов требуют специальной квалификации и мастерства, поэтому в этой области не стоит экономить и бояться переплатить профессионалам, устранение нарушений в работе системы и последствий не правильного монтажа кабеля обойдется дороже.

Принцип действия оптоволоконного кабеля.

Сама идея передачи информации при помощи света, не говоря уже о физическом принципе работы большинству обывателей не совсем понятно. Мы не будем глубоко вдаваться в эту тему, но постараемся объяснить основной механизм действия оптоволокна и обосновать такие высокие показатели его работы.

Концепция волоконной оптики опирается на фундаментальные законы отражения и преломления света. Благодаря своей конструкции стекловолокно может удерживать световые лучи внутри световода и не дает им «пройти сквозь стены» при передачи сигнала на многие километры. Кроме того не секрет, что скорость света выше.

Волоконная оптика основывается на эффекте преломления при максимальном угле падения, когда имеет место полное отражение. Это явление происходит в том случае, когда луч света выходит из плотной среды и попадает в менее плотную среду под определенным углом. Например, представим себе абсолютно не подвижную гладь воды. Наблюдатель смотрит из под воды и меняет угол обзора. В определенный момент угол обзора становится таким, что наблюдатель не сможет видеть объекты, находящиеся над поверхностью воды. Этот угол называется углом полного отражения. При этом угле наблюдатель будет видеть только объекты, находящиеся под водой, будет казаться, что смотришь в зеркало.

Внутренняя жила кабеля ВОЛС имеет более высокий показатель преломления, чем оболочка и возникает эффект полного отражения. По этой причине луч света, проходя по внутренней жиле, не может выйти за ее пределы.

Существует несколько типов оптоволоконных кабелей:

  • Со ступенчатым профилем – типичный, самый дешевый вариант, распределение света идет «ступеньками» при этом происходит деформация входного импульса, вызванная различной длиной траекторий световых лучей
  • С плавным профилем «многомодовое» – лучи света распространяются с примерно равной скоростью «волнами», длина их путей уравновешена, это позволяет улучшить характеристики импульса;
  • Одномодовое стекловолокно – самый дорогой вариант, позволяет вытянуть лучи в прямую, характеристики передачи импульса становятся практически безупречными.

Оптоволоконный кабель до сих пор стоит дороже чем другие материалы, его монтаж и заделка сложнее, требуют квалифицированных исполнителей, но будущее передачи информации несомненно за развитием именно этих технологий и этот процесс необратим.

В состав ВОЛС входят активные и пассивные компоненты. На передающем конце оптоволоконного кабеля находится светодиод или лазерный диод, их излучение модулировано передающим сигналом. Применительно к видеонаблюдению это будет видеосигнал, для передачи цифровых сигналов логика сохраняется. При передаче инфракрасный диод модулирован по яркости и пульсирует в соответствии с вариациями сигнала. Для принятия и преобразования оптического сигнала в электрический, на принимающем конце, как правило находится фотодетектор.


К активным компонентам относятся мультиплексоры, регенераторы, усилители, лазеры, фотодиоды и модуляторы.

Мультиплексор – объединяет несколько сигналов в один, таким образом для одновременной передачи нескольких сигналов реального времени можно использовать один оптоволоконный кабель. Эти устройства незаменимы в системах с недостаточным или ограниченным числом кабелей.

Существует несколько типов мультиплексоров, они различаются по своим техническим характеристикам, функциям и области применения:

  • спектрального разделения (WDM) – самые простые и дешевые устройства, передает по одному кабелю оптические сигналы от одного или нескольких источников, работающих на различных длинах волн;
  • частотного-модулирования и частотного мультиплексирования (FM-FDM) – устройства достаточно невосприимчивые к шуму и искажениям, с хорошими характеристиками и схемами средней степени сложности, имеют 4,8 и 16 каналов, оптимальны для видеонаблюдения.
  • Амплитудной модуляции с частично подавленной боковой полосой (AVSB-FDM) – с качественной оптоэлектроникой позволяют передавать до 80 каналов, оптимальны для абонентского телевидения, но дороговаты для видеонаблюдения;
  • Импульсно-кодовой модуляции (PCM – FDM)– дорогостоящее устройство, полностью цифровое применяется для распространения цифрового видео и и видеонаблюдения;

На практике часто применяются комбинации этих методов. Регенератор - устройство, осуществляющее восстановление формы оптического импульса, который, распространяясь по волокну, претерпевает искажения. Регенераторы могут быть как чисто оптическими, так и электрическими, которые преобразуют оптический сигнал в электрический, восстанавливают его, а затем снова преобразуют в оптический.

Усилитель -усиливает мощность сигнала до требуемого уровня напряжения тока, может быть оптическим и электрическим, осуществляет оптико-электронное и электронно-оптическое преобразование сигнала.

Светодиоды и Лазеры - источник монохромного когерентного оптического излучения (света для кабеля). Для систем с прямой модуляцией, одновременно выполняет функции модулятора, преобразующего электрический сигнал в оптический.

Фотоприёмник (Фотодиод) - устройство, принимающее сигнал на другом конце оптоволоконного кабеля и осуществляющее оптоэлектронное преобразование сигнала.

Модулятор - устройство, модулирующее оптическую волну, несущую информацию по закону электрического сигнала. В большинстве систем эту функцию выполняет лазер, однако в системах с непрямой модуляцией для этого используются отдельные устройства.

К пассивным компонентам ВОЛС относятся:

Оптоволоконный кабель выполняет функции среды для передачи сигнала. Наружная оболочка кабеля может быть изготовлена из различных материалов: поливинилхлорида, полиэтилена, полипропилена, тефлона и других материалов. Оптический кабель может иметь бронирование различного типа и специфические защитные слои (например, мелкие стеклянные иглы для защиты от грызунов). По конструкции может быть:


Оптическая муфта - устройство, используемое для соединения двух и более оптических кабелей.

Оптический кросс - устройство, предназначенное для оконечивания оптического кабеля и подключения к нему активного оборудования.

Спайки – предназначены для постоянного или полупостоянного сращивания волокон;

Разъемы – для повторного присоединения или отключения кабеля;

Ответвители – устройства, распределяющием оптическую мощность нескольких волокон в одно;

Коммутаторы – устройства, перераспределяющие оптические сигналы под ручным или электронным контролем

Монтаж волоконно-оптических линий связи, его особенности и порядок.

Стекловолокно очень прочный, но хрупкий материал, хотя благодаря защитной оболочке, с ним можно обращаться практически как с электрическим. Однако при монтаже кабеля следует соблюдать требования производителей по:

  • «Максимальному растяжению» и «максимальному разрывному усилию», выраженному в ньютонах (около 1000 Н или 1кН). В оптическом кабеле основное напряжение приходится на силовую конструкцию (укрепленный пластик, сталь, кевлар или их комбинация). Каждый тип конструкции имеет свои индивидуальные показатели и степень защиты, если натяжение превышает предусмотренный уровень, то оптоволокно может быть повреждено.
  • «Минимальному радиусу изгиба» – делать изгибы более плавными, избегать резких сгибов.
  • «Механической прочности», она выражается в Н/м (ньютоны/метры) – защита кабеля от физических нагрузок (на него можно наступить или даже наехать транспортом. Следует быть предельно осторожными и особо обезопасить места пересечения и соединения, нагрузка сильно увеличивается из-за малой зоны контакта.

Оптический кабель обычно поставляется намотанным на деревянные барабаны с прочным пластиковым защитным слоем или деревянными планками по окружности. Внешние слои кабеля наиболее уязвимы, поэтому при монтаже необходимо помнить о весе барабана, беречь его от ударов, падений, предпринимать меры безопасности при складировании. Лучше всего хранить барабаны горизонтально, если же они все-таки лежат вертикально, то их края (ободы) должны соприкасаться.

Порядок и особенности монтажа оптоволоконного кабеля:

  1. До начала монтажа необходимо осмотреть барабаны с кабелем на предмет повреждений, вмятин, царапин. При любом подозрении кабель лучше сразу отложить в сторону для последующего детального изучения или отбраковки. Короткие куски (меньше 2 км.) на непрерывность волокна можно проверить на просвет любым фонариком. Волоконный кабель для инфракрасной передаче так же хорошо передает обычный свет.
  2. Далее изучить трассу на предмет потенциальных проблем (острые углы, забитые кабельные каналы и т.д.), при их наличии внести в маршрут изменения для минимизации рисков.
  3. Распределить кабель по маршруту таким образом, чтобы точки соединения и подключения усилителей находились в доступных, но защищенных от неблагоприятных факторов местах. Важно, чтобы в местах будущих соединений оставался достаточный запас кабеля. Открытые концы кабеля должны быть защищены водонепроницаемыми колпаками. Для минимизации напряжения на изгиб и повреждений от проезжающего транспорта используются трубы. На обоих концах кабельной линии оставляют часть кабеля, его длина зависит от планируемой конфигурации).
  4. При прокладке кабеля под землей его дополнительно защищают от повреждений в локальных точках нагрузки, таких как контакт с неоднородным материалом засыпки, неровностями траншеи. Для этого кабель в траншее укладывают на слой песка 50-150 см. и сверху засыпают таким же слоем песка 50-150 см. Дно траншеи должно быть ровным, без выступов, при закапывании следует удалять камни, которые могут повредить кабель. Следует отметить, что повреждения кабеля могут возникнуть как сразу, так и в процессе эксплуатации (уже после засыпки кабеля), например от постоянного давления, не убранный камень может постепенно продавить кабель. Работы по диагностике и поиску и устранению нарушений уже закопанного кабеля обойдутся намного дороже, чем аккуратность и соблюдение мер предосторожности при монтаже. Глубина траншеи зависит от типа почвы и ожидаемой нагрузки на поверхности. В твердой породе глубина составит 30 см., в мягкой или под дорогой 1 м. Рекомендуемая глубина составляет 40-60 см., при толщине песчаной подстилки от 10 до 30 см.
  5. Чаще всего применяется укладка кабеля в траншею или в лоток прямо с барабана. При монтаже очень длинных линий, барабан помещается на транспортное средство, по мере продвижения машины кабель укладывается на свое место, при этом не стоит торопиться, темп и порядок размотки барабана регулируется вручную.
  6. При укладке кабеля в лоток самое главное не превышать критический радиус изгиба и механической нагрузки. Кабель следует укладывать в одной плоскости, не создавать точек сосредоточенных нагрузок, избегать на трассе резких углов, давления и пересечения с другими кабелями и трассами, не изгибать кабель.
  7. Протяжка оптоволоконного кабеля через кабельные каналы аналогична протяжке обычного кабеля, но не стоит прилагать излишних физических усилий и нарушать спецификации производителя. При использовании скоби хомутов помните, что нагрузка должна ложиться не на внешнюю оболочку кабеля, а на силовую конструкцию. Для уменьшения трения можно использовать тальк или гранулы из полистирола, по поводу применения других смазок необходимо консультироваться с производителем.
  8. В случаях, если кабель уже имеет концевую заделку, при монтаже кабеля следует быть особенно внимательными, что бы не повредить разъемы, не загрязнить их и не подвергать чрезмерной нагрузке в зоне соединения.
  9. После укладки кабель в лотке закрепляется нейлоновыми стяжками, он не должен сползать или провисать. Если особенности поверхности не позволяют использовать специальные кабельные крепления, допустимо применение хомутов, но с особой осторожностью, чтобы не повредить кабель. Рекомендуется применение хомутов с пластиковым защитным слоем, для каждого кабеля следует использовать отдельный хомут и ни в коем случае не стягивать вместе несколько кабелей. Между конечными точками крепления кабеля лучше оставить небольшую слабину, а не класть кабель в натяг, иначе он будет плохо реагировать на колебания температуры и вибрации.
  10. Если при монтаже оптоволокно все-таки было повреждено, пометьте участок и оставьте достаточный запас кабеля для последующего сращивания.

В принципе, прокладка оптоволоконного кабеля не сильно отличается от монтажа обычного кабеля. Если соблюдать все указанные нами рекомендации, то проблем при монтаже и эксплуатации не возникнет и Ваша система будет работать долго, качественно и надежно.

Пример типового решения по прокладке линии ВОЛС

Задача – организовать систему ВОЛС между двумя отдельно стоящими зданиями производственного корпуса и административного здания. Расстояние между зданиями 500 м.

Смета на монтаж системы ВОЛС
№п/п Наименование оборудования, материалов, работ Ед. из-я Кол-во Цена за ед. Сумма, в руб.
I. Оборудование системы ВОЛС, в том числе: 25 783
1.1. Кросс оптический настенный (ШКОН) 8 портов шт. 2 2600 5200
1.2. Медиаконвертер 10/100-Base-T / 100Base-FX, Tx/Rx: 1310/1550нм шт. 2 2655 5310
1.3. Муфта оптическая проходная шт. 3 3420 10260
1.4. Ящик коммутационный 600х400 шт. 2 2507 5013
II. Кабельные трассы и материалы системы ВОЛС, в том числе: 25 000
2.1. Оптический кабель с внешним тросом 6кН, центральный модуль, 4 волокна, одномодовый G.652. м. 200 41 8200
2.2. Оптический кабель с внутренним несущим тросом, центральный модуль, 4 волокна, одномодовый G.652. м. 300 36 10800
2.3. Прочие расходные материалы (разъемы, саморезы, дюбеля, изоляционная лента, крепления и т.п.) компл. 1 6000 6000
III. ИТОГО СТОИМОСТЬ ОБОРУДОВАНИЯ И МАТЕРИАЛОВ (п.I+п.II) 50 783
IV. Транспортно-заготовительные расходы, 10% *п.III 5078
V. Работы по монтажу и коммутации оборудования, в том числе: 111 160
5.1. Монтаж перетяжки ед. 4 8000 32000
5.2. Прокладка кабеля м. 500 75 37500
5.3. Монтаж и сварка разъемов ед. 32 880 28160
5.4. Монтаж коммутационного оборудования ед. 9 1500 13500
VI. ВСЕГО ПО СМЕТЕ (п.III+п.IV+п.V) 167 021

Пояснения и комментарии:

  1. Общая протяженность трассы 500 м., в том числе:
    • от забора до производственного корпуса и административного здания составляет по 100 м. (итого 200 м.);
    • вдоль забора между зданиями 300 м.
  2. Монтаж кабеля осуществляется открытым способом, в том числе:
    • от зданий до забора (200 м.) по воздуху (перетяжка) с применением специализированных для прокладки ВОЛС материалов;
    • между зданиями (300 м.) по забору из железобетонных плит, кабель закрепляется по середине полотна забора при помощи металлических клипс.
  3. Для организации ВОЛС используется специализированный самонесущий (встроенный трос) бронированный кабель.

ВОЛС (волоконно-оптические линии связи , оптоволокно) – оптические линии связи , состоящие из пассивных и активных элементов, передающие информацию при помощи светового излучения.

Различают 2 вида оптоволоконного кабеля:

  • одномодовый (обозначается OS1) – диаметр волокна 9/125 мкм. Для формирования сигнала, как правило, используется лазер;
  • многомодовый (обозначается OM1, OM2, OM3, в зависимости от характеристик световодов, центральных жил) – диаметр волокна 50/125 мкм или 62,5/125 мкм. Для формирования сигнала может использоваться лазер или светодиод.

Соединение оптоволоконного кабеля

На сегодняшний момент различают 2 способа соединения: склейкой и сваркой.

Склейка, или оптическая сборка – это соединение с помощью специальных разъёмов, содержащих клей-гель или эпоксидный клей. Данный метод чаще используется в труднодоступных местах или на взрывоопасных производствах, где недопустимо образование искр. Из-за сложности проводимых операций, например, полировка оптического кабеоя под UPC или APC, этот метод оказывается дороже. Для контроля качества выполненных работ используют микроскоп с увеличением в 200 крат, но практика показывает, что при таком способе соединения потери остаются достаточно высокими по сравнению со сваркой.

Сварка – это соединение с использованием специализированного сварочного аппарата, который выполняет все операции автоматически, за счет этого влияние человеческого фактора можно свести к минимуму. В аппарат подаются подготовленные специальным образом концы оптического кабеля (сколотые), которые затем соединяются при помощи электрической дуги. В процессе сварки сварочный аппарат проводит множество проверок (тип волокна, качество свариваемых краев, наличие неоднородностей в месте сварки, механическая прочность места сварки и т.д.), что в свою очередь значительно позволяет снизить расходы и время монтажа.

Тестирование сетей из оптоволокна

После проведенного монтажа все оптические линии необходимо досконально проверить. Для этих целей используется специализированное оборудование – рефлектометр, позволяющий определить следующие параметры:

  • длину и тип оптического кабеля;
  • наличие трещин и скрытых дефектов;
  • расстояние до дефектов;
  • затухание.

Также используется микроскоп с увеличением не ниже 200 крат, через который производится съемка мест сварки. Впоследствии все эти данные попадают в отчет, в котором показывается, как были выполнены работы.

Преимущества оптики перед обычными кабельными сетями

Дальность передачи данных

Дальность передачи данных в оптоволоконных сетях значительно выше, чем в линиях, построенных на основе медных кабелей (LAN).

В зависимости от типа оптоволоконного кабеля, дальность передачи данных без повторителей на скорости 10 Гбит/с возможна:

до 5 км – OS1;

до 33 метров – OM1;

до 82 метров – OM2;

до 300 метров – OM3.

Защищенность сети ВОЛС

Оптическое волокно имеет более совершенную защиту от несанкционированного доступа к информации по сравнению с сетями, передающими посредством электрических импульсов. Стороннее подключение к линии оптоволокна невозможно из-за особенности строения кабеля. При попытке считать информацию нужно разрушить целостность лакового покрытия кабеля, что неминуемо прервет передачу данных в сети и факт подключения будет очевидным.

Особенности монтажа ВОЛС по сравнению с LAN и WI-FI

Медные LAN линии могут влиять:

  • электрические сети;
  • наличие оптических коммуникаций;
  • наличия водопроводных труб и труб пожаротушения;
  • влияние погодных факторов.

На Wi-Fi сети могут влиять:

  • преграды (стены);
  • погодные условия;
  • бытовые приборы;
  • прямая видимость;
  • требования законодательства (если трансляция идет вне помещений, то необходима регистрация такого канала в надзорных органах, что приводит к значительному удорожанию канала).

Рентабельность вложения в оптоволоконные сети

Оборудование для оптоволоконных сетей стоит дороже, чем для медных линий или для точки доступа Wi-Fi. Однако при расчете пропускной способности по отношению к цене, оптика является более выгодным решением.

Учитывая все вышеперечисленные достоинства сетей нового поколения, можно с уверенностью рекомендовать ВОЛС в качестве единственно возможного варианта!

Скорость и безопасность передачи больших объемов данных значительно повысит потенциал вашего бизнеса и позволит вывести его на новый уровень.

Закажите устройство волоконно-оптических линий связи в компании « » по указанным на сайте телефонам!

Почему вам нужно заказать наладку видеонаблюдение в

Почему стоит доверить комплексную работу профессионалам «Терра Ментор»:

  • проведут предпроектное обследование;
  • разработают проект и рабочую документацию;
  • произведут монтаж и пусконаладочные работы пассивных и активных элементов ВОЛС.


Статьи по теме