Оптические пульсометры - купить пульсометры с оптическим датчиком: выгодные цены на оптические пульсометры.

Оптические пульсометры – относительно новый вид портативных кардиомониторов. В продаже оптические пульсометры появились всего пару лет назад. На нашем сайте можно ознакомиться с особенностями инновационных гаджетов, прочесть отзывы на оптические пульсометры, купить кардиодатчик и на собственном опыте оценить достоинства устройства.

Идея оптического монитора фиксации частоты сердечных сокращений не нова. Наверняка, каждый видел в кино сюжет, где пациент больницы лежит, опутанный с ног до головы проводами и на пальце у него прикреплен приборчик, напоминающий прищепку. Вот эта самая «прищепка» и есть оптический пульсометр. И всем устройство хорошо – миниатюрное, точное, легкое, не дорогое в производстве. Если бы не одно «но» – получить точные показания с его помощью можно только в случае, если пациент неподвижен в течение всего времени снятия данных. Именно поэтому производители портативных пульсометров забраковали оптические датчики.

И так бы, наверное, оптические пульсометры в продаже и не появились, не приди в голову одной любопытной канадке идея приспособить медицинский датчик под бытовые нужды. Лиз Дикинсон (Liz Dickinson) инженер по образованию, работавшая с известными мировыми технологическими компаниями, такими как Oracle, IBM, AT&T, TELUS, в 1999 году предложила идею аппаратной адаптации сенсора, чем вызвала гомерический хохот у всех причастных к производству, как медицинской техники, так и портативных бытовых пульсометров.

Другой бы на ее месте сдался, но гордая жительница Ванкувера больше десяти лет шлифовала идею и в 2012 году начала кампанию по сбору $100 000 на проект наручного пульсометра нового поколения на сайте KickStarter. Период финансирования длился всего 44 дня. Его результатом стала сумма в $321 314, создание компании Mio, 5 технических патентов, патент в категории «Спортивные и фитнес устройства», всемирный почет и уважение. И, конечно, линейка Mia – оптические пульсометры, продажи которых бьют все мыслимые рекорды. Многие производители медицинской техники и спортивных гаджетов используют в своих устройствах канадскую технологию. На сегодняшний день Mio является мировым лидером с области технологии мониторинга сердечного ритма.

Оптические пульсометры, характеристики которых базируются на инновационном подходе к оптическим сенсорам, демонстрируют беспрецедентную точность измерения пульса. Этого удалось достичь благодаря тандему оптического датчика, акселерометра и микропроцессора. Устройство с помощью оптического сенсора и двух зеленых лазеров фиксирует пульсацию кровеносных сосудов, фильтрует помехи, возникающие при движении, анализирует результаты с помощью вычислительного блока и специально разработанных алгоритмов. Конечно, цена на оптические пульсометры далеко не бюджетный вариант. Но и оптические пульсометры smart поколения отнюдь не заурядные гаджеты.

Купить оптические пульсометры можно в формате наручных часов. Модели оптических пульсометров чрезвычайно стильные и выделяются на фоне спортивных часов более широким браслетом. Это обусловлено необходимостью добиться максимально плотного прилегания корпуса с оптическим датчиком к коже. На тыльной стороне корпуса, кроме двух лазеров и оптического датчика, располагают контактную зарядную площадку. Рекомендуемая производителями оптических пульсометров цена включает зарядные адаптеры (чаще всего оригинальной конструкции). Большинство моделей пульсометров работают около 5-8 часов в режиме постоянного снятия показаний частоты пульса.

Оптические пульсометры могут функционировать в автономном режиме, правда в этом случае во встроенной памяти устройств сохраняется ограниченный объем информации. Особенностью оптических пульсометров является наличие цветных индикаторов в нижней части корпуса. Благодаря этим крохотным светодиодам пользователь может контролировать интенсивность нагрузки во время тренировки, чтобы находиться в пределах рабочей зоны пульса. Достаточно бросить мимолетный взгляд – зеленый индикатор свидетельствует о частоте пульса в рамках заданного диапазона, синий – подскажет, что необходимо ускориться, а красный – сигнализирует о критически высокой нагрузке.

Сопряжение со смартфоном или компьютером позволяет расширить базовый функционал гаджета. Оптические пульсометры, обзор которых можно найти на нашем сайте, чаще всего оснащены радиомодулем Bluetooth и поддерживают несколько десятков спортивных приложений.

В нашем магазине представлены оригинальные оптические пульсометры, скидки, акции, бонусные программы, удобный механизм оплаты и оперативная доставка.

При занятиях спортом правильное распределение нагрузки обеспечивает контроль работы сердца. Для выполнения этой задачи используют пульсометры.

Традиционно выбираются модели с нагрудным датчиком, но их основным недостатком является необходимость терпеть неудобный ремень. Альтернативой этим устройствам выступают гаджеты без нагрудного датчика, снимающие показания с запястья. У моделей есть свои достоинства и недостатки.

Сравнительный анализ пульсометров с нагрудным датчиком и без

  • Точность измерений. Нагрудный датчик быстрее реагирует на сокращение сердца, точно отражая его работу на экране. Датчик, встроенный в браслет или часы может несколько искажать данные. Показания снимаются по изменению плотности крови после того, как сердце вытолкнуло новую порцию крови, и она дошла да запястья. Эта особенность определяет возможность небольших погрешностей в тренировках с интервалами. Пульсометр не успевает среагировать на нагрузку после перерыва в первые секунды.
  • Удобность в использовании. Устройства с нагрудным датчиком могут быть неудобными из-за необходимости терпеть трение ремня, что становится особенно неудобно в жаркую погоду. Сам ремень отлично впитывает пот спортсмена во время тренировок, приобретая крайне неприятный запах.
  • Дополнительные функции. Устройство с ремнем обычно оснащено функцией записи трека, поддерживает ANT+ и Bluetooth. Для большинства моделей без нагрудного датчика эти возможности недоступны.
  • Батарея. Собственная батарея у гаджета с ремнем позволяет не вспоминать о подзарядке на протяжении нескольких месяцев. Представители без нагрудного датчика требуют зарядки батареи после каждых 10 часов использования, некоторые модели – каждые 6 часов

Чем пульсометр без нагрудного датчика лучше?

Использование подобного гаджета при условии его плотного прилегания к коже позволяет:

  • Забыть о дополнительных устройствах в виде секундомера, .
  • Не бояться воды. Все больше моделей приобретают функцию защита от воды, продолжая эффективно работать при погружении.
  • Компактное устройство легко размещается на руке, не отвлекая спортсмена, не создавая ему неудобств.
  • Задать необходимый ритм для тренировок, о выходе из его немедленно сообщит звуковой сигнал.

Виды пульсометров без нагрудного датчика

В зависимости от размещения датчика гаджеты могут быть:

  1. С датчиком встроенным в браслет. Обычно такие устройства используют в качестве наручных гаджетов, в сочетании с часами.
  2. Сам датчик может встраиваться и в часы, позволяя получить новое более функциональное устройство.
  3. С датчиком на ухе или пальце. Считается недостаточно точным из-за того, что регистрирующее устройство может недостаточно плотно прилегать к коже или вовсе сползти и потеряться.

Возможна классификация по принципу особенностей конструкции. По такому критерию гаджеты распределяются на:

  • Проводные. Не слишком удобные в использовании они представляют собой датчик и браслет, соединенные проводом. Для проводного устройства характерно наличие устойчивого сигнала без помех. Такой пульсометр особенно удобен для людей с нарушениями давления или сердечного ритма.
  • Беспроводные модели предусматривают альтернативные способы передачи информации с датчика на браслет. Они особенно эффективны при необходимости отслеживать свой прогресс и общее состояние во время спортивных тренировок. Недостатком устройства считается его чувствительность к помехам, создаваемым подобными техническими новинками, находящимся вблизи. Из-за этого данные, выводимые на монитор, могут оказаться неточными. Компании, занимающиеся выпуском подобных пульсометр, предлагают потребителям ознакомиться с моделями, способными передавать кодированные сигналы, не искажаемые другими пульсометрами.

Конструкция допускает и варианты по внешнему виду устройства. Это могут быть обычные фитнес-браслеты с минимальным набором функций, пульсометры, встроенные в часы, либо техника, имеющая внешний вид наручных часов с дополнительной функцией сообщать время своему владельцу.

Топ 10 лучших моделей пульсометров без нагрудного датчика

Alpha Mio. Небольшое устройство на удобном прочном ремешке. В режиме бездействия работают по принципу обычных электронных часов.

Германская бюджетная модель Beurer PM18 оснащена еще и шагометром. Особенность в пальцевом датчике, для получения нужной информации достаточно приложить палец к экрану. Внешне пульсометр имеет вид стильных часов.

Sigma Sport отличается скромной ценой и необходимостью использовать дополнительные способы для надежного контакта датчика и кожи. Это могут быть различные гели и даже обычная вода.

Adidas miCoach Smart Run и miCoach Fit Smart . Обе модели работают на датчике компании Мио. Особенностью гаджетов является их внешний вид стильных мужских часов, которыми они и являются вне периода тренировок. Точная информация обеспечена функцией считывания частоты сердечных сокращений без перерыва, в том числе и во время покоя, работы, что позволяет получить максимально точную картину сложности тренировки, реакции организма на нее.

Polar M Пульсометр для бегунов. Особенно рекомендуется для начинающих.

Basis Peak доступный гаджет, легкий простой в использовании. Крепление прочное. Один нюанс — для начала придется «договориться» с новинкой. Показания способны отличаться на 18 ударов, но подстроиться под работу техники не сложно. Подходит и для велосипедистов.

Fitbit Surge делает собственные выводы о зоне комфорта для бегуна, основываясь на анализе сведений, полученных с датчика в режиме контроля и режиме активной тренировки.

Mio Fuse отличается дополнительным оптическим датчиком в конструкции. Пульсометр позволяет получать максимально точную информацию о работе сердца. Допускается к использованию и для велосипедистов.

Сунтер удобен, компактен, отличается ярким дизайном и хорошей подсветкой. Модель популярна у альпинистов и бегунов.

235 самостоятельно рассчитывает оптимальную нагрузку для свого владельца с учетом его активности за несколько часов, составляет график сна. Среди дополнительных функций – возможность использовать технику в качестве пульта дистанционного управления для своего смартфона.

Бегаю каждое утро. Непрофессионально, просто для здоровья и собственного удовольствия. Нагрудный датчик нужно заранее одевать, часы всегда с собой. Часто бывает так, что окончательно просыпаюсь я уже на беговой дорожке, поэтому про пульсометр раньше часто забывал. Теперь он всегда со мной. Удобно.

Люблю кататься на велосипеде, но необходимость контроля работы сердца заставила купить пульсометр. Из-за постоянно перекручивающегося ремня решился попробовать наручный. Разница в показаниях 1-3 удара, что считаю вполне допустимым, зато сколько плюсов.

Мне пришлось долго подстраиваться к наручной модели. То она съезжает, то недостаточно плотно прилегает, то ее трясет. В общем, подстраиваться должна техника, а не человек. Ее для того и делают, чтобы нам людям было удобно!

У меня большой вес, кардиолог потребовал постоянно пользоваться пульсометром. Работаю я уборщицей, приходится постоянно наклоняться, много двигаться, поднимать вес, контактировать с водой. Два первых пульсометра пришлось просто выкинуть (механические повреждения корпуса). На день рождения муж подарил наручную модель. Руки у меня полные, но браслет оказался хорошо корректируемым. Сам пульсометр справился и с моей работой, он не исказил результатов даже после намокания. Проверяли его результаты и девчонки с работы, подсчитывая вручную и в кабинете кардиолога специальной машиной. Я довольна.

В этой статье вы узнаете о нескольких деталях, на которые нужно обращать внимание при разработке сенсоров фотоплетизмографа.

Введение

В предыдущей статье вы познакомились с конструкцией . Сегодня я поделюсь некоторыми наработками, которые могут быть полезны при выборе элементной базы плетизмографа и разработке его электрической схемы. Они помогут улучшить качество полезного сигнала, на которое в первую очередь влияют следующие факторы:
  • отсутствие артефактов;
  • наличие выраженной пульсовой волны в точке регистрации;
  • конструкция чувствительного элемента.
Артефакт – не относящееся к полезной составляющей изменение формы сигнала, спектрально и амплитудно схожее с ним.

Существуют несколько источников артефактов:

  • передвижения человека, использующего фотоплетизмограф, относительного источника освещения, естественного или искусственного, например, перемещение тени от солнца во время занятий спортом;
  • передвижения источника света относительно человека или изменение яркости этого источника. Например, мерцания люминесцентных ламп;
  • не связанные с пульсом движения частей тела вызывающие движения фотоплетизмографа или точек тела в том месте, где установлен чувствительный элемент. Например, движения костей предплечья, возникающие при движениях пальцами, движения костей головы, связанные с речью и мимикой.
Кроме артефактов качество измерения пульса зависит от выраженности пульсовой волны. У одного и того же человека пульс может быть проявлен очень хорошо и очень плохо. Например, я много раз наблюдал за изменением пульса во время трехчасового компьютерного психо-физиологического тестирования. Измерение пульсограммы производилось с мочки уха. При этом сигнал ухудшался с течением времени. Это могло происходить достаточно быстро – за полчаса, и связано, предположительно, с тем, что ушная клипса ухудшает кровоток, а также с вынужденной неподвижностью испытуемого.

Похожая ситуация наблюдается при измерении пульса с фаланги пальца. Изменение температуры в помещении или легкое изменение позы человека и вызванное этим смещение точки регистрации на небольшое расстояние могут привести к снижению уровня сигнала или вовсе к его исчезновению.

При измерении пульса с виска проблема отсутствия сигналов обостряется. Площадь виска больше площади пальца, труднее найти точку, в которой пульс лучше проявлен, и больше вероятность, что пользователь наденет датчик неправильно.

Многоканальные чувствительные элементы

Для решения описанной проблемы может быть применен распространенный в технике принцип – дублирование, которое в данном случае подразумевает использование датчика с несколькими чувствительными элементами. Принципиальная схема, реализующая такую идею, приведена на следующем рисунке.

Предвижу скептические мысли читателей насчет параллельно включенных светодиодов. Прошу не судить строго, так как это опытный образец, который не должен был эксплуатироваться длительное время.

Светодиоды и фототранзисторы на печатной плате располагаются попарно. Размер платы выбирается таким, чтобы перекрывать всю область виска, это позволяет располагать там же схему усиления и фильтрации сигнала. Плата может содержать отверстия для крепления к ленте-тесьме. Внешний вид датчика с девятью чувствительными элементами представлен на следующем рисунке.

Аналогичное решение может быть применено для измерения пульса с пальца или запястья. Ниже изображена схема датчика, состоящего из четырех фототранзисторов и одного светодиода.

Эмиттеры фототранзисторов могут не соединяться и тогда сигналы с каждого из них измеряются независимо, в этом случае требуется специальное многоканальное измерительное устройство. Многоканальное исполнение может быть также полезно для устранения артефактов. Если артефакт возникает только в районе одного фотоэлемента, он фиксируется и не учитывается в общей картине измерения. Однако использование такой схемы не всегда удобно, так как приводит к увеличению габаритов. Совсем другое дело, если соединить фоточувствительные элементы параллельно. В этом случае требуется только один измерительный канал. На следующем рисунке приведен прототип такого датчика. Он работает по схеме «на отражение». Светодиод располагается в центре, а фототранзисторы по краям. Датчик может использоваться для регистрации пульсограммы с фаланги пальца или запястья. Печатная плата разведена так, чтобы иметь возможность подключать фототранзисторы в многоканальный или одноканальный варианты.

Компаудирование

Для лучшей фиксации фотоэлементов поверхность печатной платы может быть залита компаундом. Для заливки изготавливается специальная форма, которую вы также видите на рисунке. Чтобы компаунд не прилипал к форме, ее лучше изготавливать из фторопласта. Если форму выполнить из другого материала, например из металла, то перед заливкой компаунда ее следует смазать специальным составом. Если такого состава нет в наличии, подойдет обычный вазелин. Следует также внимательно подходить к выбору компаунда, так как неправильно выбранный состав может деформировать элементы при отверждении.

Кроме фиксации компаунд выполняет роль светофильтра. Для этой цели подходят эпоксидные компаунды с красителями. Например может использоваться компаунд «Эпоксикон» производства СПбГТИ.

Альтернативу компаундам могут составить твердые светофильтры. Они вплотную прилегают к печатной плате, а для светодиодов и фототранзисторов выполняются пазы фрезой или лазером. На следующем рисунке изображен датчик с элементами, закрытыми отфрезерованной пластиной.

Наличие светофильтра позволяет минимизировать артефакты, создаваемые внешними источниками света. На следующем изображении представлен вид оптических компаундов до отверждения и после.

Особенности выбора фототранзисторов и светодиодов

Для регистрации пульсовой волны используются фоточувствительные элементы – фотодиоды или фототранзисторы. В этой статье речь идет только о фототранзисторах. Потому что на момент моего начала работ в этом направлении уже имелись на руках несколько десятков различных транзисторных сенсоров (клипс, прищепок и напалечников), а также были наработанные схемотехнические решения. Использование диодов при этом ничуть не хуже и повсеместно применяется в различных приложениях, например в распространённых медицинских датчиках стандарта Nellcor.

При выборе фототранзисторов и светодиодов в первую очередь следует обращать внимание на следующие характеристики:

  • длину волны (максимум спектральной характеристики) [нм];
  • угол половинной яркости для светодиодов и угол охвата для фототранзисторов [град.];
  • интенсивность излучения [мВт/ср] для светодиодов и чувствительность для фототранзисторов [мА/(мВт/см2)];
  • номинальный ток фототранзистора и светодиода [мА];
  • темновой ток фототранзистора [мА];
  • наличие встроенных в корпус линз и светофильтров.

Для измерения пульса лучше всего подходят длины волн, которые сильнее всего поглощаются кровью. Это волны соответствующие зеленому цвету 530 нм. Так же используются красный и инфракрасный диапазоны. Очень рекомендую с классификацией способов измерения пульса, там же вы узнаете про спектр поглощения гемоглобина.

При выборе фотоэлементов следует обращать внимание на наличие линз и светофильтров, которые позволяют достичь желаемого угла половинной яркости и охвата, а, значит, быть менее чувствительным к излучению от других источников. Встроенные фильтры позволяют работать только в выбранном спектральном диапазоне. Если выбрать светодиод с большим углом половинной яркости и фототранзистор с большим углом охвата, то свет будет проходить, минуя поверхность кожи. Это приведет к ухудшению измерительного диапазона и световой поток, модулируемый пульсовой волной, практически не будет влиять на выходной сигнал измерительной схемы. Эта ситуация проиллюстрирована на следующем рисунке

Угол а2 является допустимым, а угол а1 слишком велик для того чтобы использовать светодиод с таким углом в устройстве измерения пульса. Этот пример относится к случаю измерения пульса «на отражение». Выбор светодиода с большим углом половинной яркости в устройствах, работающих «на просвет» приведет к тому, что большая мощность излучения будет проходить мимо фотоприемника. Это нежелательно, особенно в мобильных устройствах.

Также следует обращать внимание на интенсивность излучения светодиода, измеряемую в милливаттах на стерадиан [мВт/ср]. В документах на светодиоды она указывается обычно при токах 20, 100 и 1000 мА. Для экономии электроэнергии лучше выбирать светодиоды, у которых эта характеристика выше при одном и том же потребляемом токе. Следует обращать внимание на величину фотоэлектрического тока фототранзистора, чем больше ее значение, тем лучше. Последние две характеристики связаны между собой. В результате, уровень минимально ожидаемого сигнала должен быть хотя бы в несколько раз выше ожидаемого уровня шумов в измерительном устройстве.

Светодиоды и фототранзисторы часто продаются парами, подходящими друг к другу конструктивно и по спектральным характеристикам. В таблице приведены характеристики нескольких пар светодиодов и фототранзисторов. Пары в строчках 2 и 3 не подходят для использования в пульсометрах из-за большого угла и низкой мощности излучения. Пары 1, 4 и 5 подходят, причем первая пара подходит лучше всего. Это было подтверждено испытаниями. При прочих равных условиях лучший сигнал пульсограммы снимался при использовании первой пары. Нужно отметить, что если между светодиодом и фототранзистором поставить непрозрачную преграду, то угол излучения и чувствительности будут не так сильно влиять на качество измерения пульса.

Заключение. Три в одном

Вместо заключения упомяну замечательное интегральное решение, которое в комментариях к предыдущей статье привел хабрапользователь

Всем привет!

Совсем немного осталось до начала нашей краундфандинговой компании часов для измерения уровня стресса EMVIO . Появилась небольшая передышка и пальцы попросились к клавиатуре.

Немного о нашем сердце

Как известно, сердце – это автономный мышечный орган, который выполняет насосную функцию, обеспечивая непрерывный ток крови в кровеносных сосудах путем ритмичных сокращений. В сердце имеется участок, в котором генерируются импульсы, ответственные за сокращение мышечных волокон, так называемый водитель ритма (pacemaker). В нормальном состоянии, при отсутствии патологий, этот участок полностью определяет частоту сердечных сокращений. В результате образуется сердечный цикл – последовательность сокращений (систола) и расслаблений (диастола) сердечных мышц, начиная от предсердий и заканчивая желудочками. В общем случае под пульсом понимают частоту, с которой повторяется сердечный цикл. Однако есть нюансы, каким способом мы регистрируем эту частоту.

Что мы считаем пульсом

В те времена, когда медицина не имела технических средств диагностики, пульс измеряли всем известным способом – пальпацией, т.е. прикладывали палец к определенной области тела и слушали свои тактильные ощущения, и считали количество толчков стенки артерии через кожу за некоторое время - обычно 30 секунд или одну минуту. Отсюда и появилось латинское название этого эффекта - pulsus, т.е. удар, соответственно единица измерений: ударов в минуту, beatsperminute (bpm). Есть много методик пальпации, самые известные это прощупывание пульса на запястье и на шее, в области сонной артерии, который так популярен в кино.
В электрокардиографии пульс вычисляется по сигналу электрической активности сердца - электрокардиосигналу (ЭКС) путем замеров длительности интервала (в секундах) между соседними R зубцами ЭКС с последующим пересчетом в удары в минуту по простой формуле: BPM = 60/(RR-интервал) . Соответственно нужно помнить, что это желудочковый пульс, т.к. период сокращения предсердий (PP интервал) может немного отличаться.

Attention!!! Cразу хотим отметить важный момент, который вносит в путаницу в терминологию и часто встречается в комментах к статьям про гаджеты с измерением пульса. Фактически пульс, который измеряется по сокращениям стенок кровеносных сосудов, и пульс, который измеряется по электрической активности сердца, имеют разную физиологическую природу, разную форму временной кривой, различный фазовый сдвиг и соответственно требует различные методы регистрации и алгоритмы обработки. Поэтому не может быть никаких RR-интервалов при измерении пульса по модуляции объемов кровенаполнения артерий и капилляров и механических колебаний их стенок. И обратно, нельзя говорить, что если у вас нет RR-интервалов, то вы не можете измерить аналогичные по физиологической значимости интервалы по пульсовой волне.

Как гаджеты измеряют пульс?

Итак, вот наш вариант обзора самых распространённых способов измерения пульса и примеры гаждетов, которые их реализуют.

1. Измерение пульса по электрокардиосигналу

После обнаружения в конце 19 века электрической активности сердца появилась техническая возможность ее зарегистрировать.Первым, по настоящему, это сделал Виллем Эйнтховен (Willem Einthoven) в 1902 году, с помощью своего мегадевайса – струнного гальванометра (string galvanometer). Кстати он осуществил передачу ЭКГ по телефонному кабелю из больницы в лабораторию и, по сути, реализовал идею удаленного доступа к медицинским данным!


Три банки с “рассолом” и электрокардиограф весом 270 кг! Вот так рождался метод, который сегодня помогает миллионам людей во всем мире.

За свои труды в 1924 году он стал лауреатом Нобелевской премии. Именно Эйнтховен в первые получил реальную электрокардиограмму (название он придумал сам), разработал систему отведений – треугольник Эйнтховена и ввел названия сегментов ЭКС. Самым известным является комплекс QRS - момент электрического возбуждения желудочков и, как наиболее выраженный по своим временным и частотным свойствам элемент этого комплекса, зубец R.


До боли знакомый сигнал и RR-интервал!

В современной клинической практике для регистрации ЭКС используют различные системы отведений: отведения с конечностей, грудные отведения в различных конфигурациях, ортогональные отведения (по Франку) и т.п. С точки зрения измерения пульса можно использовать любые отведения, т.к. в нормальном ЭКС R зубец в том или ином виде присутствует на всех отведениях.

Спортивные нагрудные датчики пульса
При проектировании носимых гаджетов и различных спортивных тренажеров система отведений была упрощена до двух точек-электродов. Самым известным вариантом реализации такого подхода являются спортивные нагрудные мониторы в виде ремешка-кардиомонитора – HRM strap или HRM band. Думаем у читателей, ведущих спортивный образ жизни, такие устройства уже имеются.


Пример конструкции ремешка и Мистер-гаджет 80 lvl. Sensor pad – это два ЭКГ электрода с разных сторон груди.

На рынке популярностью пользуются HRM ремешки фирм Garmin и Polar, также имеется множество китайских клонов. В таких ремешках электроды выполнены в виде двух полосок из проводящего материала. Ремешок может быть частью всего устройства или пристегиваться к нему застежками-клипсами. Значения пульса, как правило, передаются по Bluetooth по протоколу ANT+ или Smart на спортивные часы или смартфон. Вполне удобно для спортивных занятий, но постоянное ношение вызывает дискомфорт.

Мы экспериментировали с такими ремешками в плане возможности оценки вариабельности пульса, считая их за эталон, но поступающие с них данные, оказались сильно сглаженными. Участник нашей команды Kvanto25 публиковал пост , как он разбирался с протоколом ремешка Polar и подключал его к компьютеру через среду Labview.

С двух рук
Следующим вариантом реализации двух электродной системы является разнесение электродов на две руки, но без постоянного подключения одной из них. В таких устройствах один электрод закрепляется на запястье в виде задней стенки часов или браслета, а другой выносится на лицевую часть устройства. Чтобы измерить пульс, нужно свободной рукой коснуться лицевого электрода и подождать несколько секунд.


Пример пульсометра с фронтальным электродом (Пульсометр Beurer)

Интересным устройством, использующим такую технологию, является браслет Phyode W/Me, разработчики которого провели успешную кампанию на Кикстартере, и их продукт имеется в продаже. На хабре про него был пост .


Электродная система PhyodeW/Me

Верхний электрод совмещен с кнопкой, поэтому многие люди, рассматривая прибор по фоткам и читая отзывы, думали, что измерение происходит просто по нажатию кнопки. Теперь вы знаете, что на подобных браслетах непрерывная регистрация со свободными руками в принципе не возможна.

Плюс этого устройства в том, что измерение пульса не является главой целью. Браслет позиционируется как средство проведения и контроля дыхательных методик, типа индивидуального тренера. Мы приобрели Phyode и проигрались с ним. Все работает, как обещано, регистрируется реальная ЭКГ, соответствующая классическому первому отведению ЭКГ. Однако прибор очень чувствителен к движениям пальца на фронтальном электроде, чуть сдвинулся и сигнал поплыл. С учетом того, что для набора статистики нужно около трех минут процесс регистрации выглядит напряжно.

Вот еще вариант использования принципа двух рук в проекте FlyShark Smartwatch, который выложен на Кикстартере .


Регистрация пульса в проекте FlyShark Smartwatch. Будьте добры подержать пальчик.

Что еще нового есть в этой области? Обязательно нужно упомянуть об интересной реализации ЭКГ электрода – емкостного датчика электрического поля EPIC Ultra High Impedance ECG Sensor производства фирмы Plessey Semiconductors.


Емкостной датчик EPIC для бесконтактной регистрации ЭКГ.

Внутри датчика установлен первичный усилитель, поэтому его можно считать активным. Датчик достаточно компактный (10х10 мм), не требует прямого электрического контакта, соответственно не имеет эффектов поляризации и их не надо смачивать. Нам кажется это решение весьма перспективным для гаджетов с регистрацией ЭКС. Готовых устройств на этих датчиках мы пока не видели.

2. Измерение пульса на основе плетизмографии

Поистине самый распространённый способ измерения пульса в клинике и быту! Сотни разнообразных устройств от прищепок до перстней. Сам метод плетизмографии основан на регистрации изменения объемов кровенаполнения органа. Результатом такой регистрации будет пульсовая волна. Клинические возможности плетизмографии выходят далеко за рамки простого определения пульса, но в данном случае нам интересен именно он.
Определение пульса на основе плетизмографии может быть реализовано двумя основными способами: импедансным и оптическим. Есть и третий вариант – механический, но мы не будем его рассматривать.
Импедансная плетизмография
Как говорит нам Медицинский словарь, импедансная плетизмография – это метод регистрации и исследования пульсовых колебаний кровенаполнения сосудов различных органов и тканей, основанный на регистрации изменений полного (омического и емкостного) электрического сопротивления переменному току высокой частоты. В России часто используется термин реография. Этот способ регистрации ведет свое начала с исследований ученого Манна (Mann, 30 –е годы) и отечественного исследователя Кедрова А.А. (40–е годы).
В настоящее время методология способа основана на двух или четырехточечной схеме измерения объемного удельного сопротивления и состоит в следующем: через исследуемый орган с помощью двух электродов пропускается сигнал с частотой от 20 до 150 кГц (в зависимости от исследуемых тканей).


Электродная система импедансной плетизмографии. Картинка отсюда

Главное условие, предъявляемое к генератору сигнала - это постоянство тока, его значение выбирают обычно не более 10-15 мкА. При прохождении сигнала через ткань его амплитуда модулируется изменением кровенаполнения. Вторая система электродов снимает модулированный сигнал, фактически имеем схему преобразователя импеданс-напряжения. При двухточечной схеме электроды генератора и приемника объединены. Далее сигнал усиливается, из него изымается несущая частота, устраняется постоянная составляющая и остается нужная нам дельта.
Если прибор откалибровать (для клиники это обязательное условие), то по оси Y можно откладывать значения в Омах. В итоге получается вот такой сигнал.



Примеры временных кривых ЭКГ, импедансной плетизмограммы (реограмме) и ее производной при синхронной регистрации. (отсюда)

Очень показательная картинка. Обратите внимание, где находится RR-интервал на ЭКС, а где расстояние между вершинами, соответствующее длительности сердечного цикла на реограмме. Также обратите внимание на резкий фронт R зубца и пологий фронт систолической фазы реограммы.

Из пульсовой кривой можно получить довольно много информации по состоянию кровообращения исследуемого органа, особенно синхронно с ЭКГ, но нам нужен только пульс. Определить его не сложно - нужно найди два локальных максимума, соответствующих максимальной амплитуде систолической волны, вычислить дельту в секундах ∆T и далее BMP = 60/∆T .

Примеров гаджетов, которые используют данный способ, мы пока не нашли. Зато есть пример концепта имплантируемого датчика для контроля кровообращения артерии. Вот про него. Активный датчик сажается прямо на артерию, с хост-девайсом общается по индуктивной связи. Мы считаем, что это очень интересное и перспективный подход. Принцип работы понятен из картинки. Спичка показана для понимания размера:) Используется 4-х точечная схема регистрации и гибкая печатная плата. Думаю, при желании, можно допилить идею для носимого микро-гаджета. Плюс этого решения в том, что потребление такого датчика исчезающее мало.


Имплантируемый сенсор кровотока и пульса. Похож на аксессуар Джонни-Мнемоника.

В завершении этого раздела сделаем ремарку. В свое время мы считали, что таким способом измеряется пульс в известном стартапе HealBeGo, поскольку в этом устройстве базовая функциональность реализуется методом импедансной спектроскопии, что, по сути, и есть реография, только с изменяемой частотой зондирующего сигнала. В общем, все уже на борту. Однако согласно описанию характеристик прибора пульс в HealBe измеряется механическим методом с помощью пьезодатчика (про этот способ во второй части обзора).

Оптическая плетизмография или фотоплетизмографияя
Оптический – это самый распространённый способ измерения пульса с точки зрения массового применения. Сужение и расширение сосуда под действием артериальной пульсации кровотока вызывают соответствующее изменение амплитуды сигнала, получаемого с выхода фотоприемника. Самые первые устройства были применены в клинике и измеряли пульс с пальца в режиме просвета или отражения. Форма пульсовой кривой повторяет реограмму.


Иллюстрация принципа работы фотоплетизмографии

Способ нашел широкое использование в клинике и вскоре технология была применена в бытовых устройствах. Например, в компактных пульсоксиметрах, регистрирующих пульс и сатурацию кислородом крови в капиллярах пальца. В мире производится сотни модификаций. Для дома, для семьи вполне пойдет, но не подходит для постоянного ношения.


Пульсоксиметр обыкновенный и клипса для уха. Тысячи их!

Существуют варианты с ушными клипсами и наушниками со встроенными датчиками. Например, такой вариант от Jabra или новый проект Glow Headphones . Функциональность аналогична HRM ремешкам, но более стильный дизайн, привычное устройство, свободный руки. Постоянно носить затычки в ушах не будешь, но для пробежек на свежем воздухе под музыку в самый раз.


Наушники Jabra Sport Pulse™ Wireless и Glow Headphones. Пульс регистрируется внутриушным (in-ear sensor) способом.

Прорыв

Самым заманчивым было измерение пульса с запястья, ведь это такое привычное и комфортное место. Первыми были часы Мио Alpha с успешной компанией на Кикстартере.

Создательница продукта Лиз Дикинсон (Liz Dickinson) пафосно провозгласила это устройство Святым Граалем измерения пульса. Модуль датчика был разработан ребятами из Philips. На сегодняшний день это самое качественное устройство для непрерывного измерения пульса с запястья методом фотоплетизмографии.


Даешь умных часов много и разных!

Сейчас можно сказать, что технология отработана и внедрена в серийное производство. Во всех подобных устройствах реализуется измерение пульса по отраженному сигналу.

Выбор длины волны излучателя

Теперь пару слов, как выбирают длину волны излучателя. Тут все зависит от решаемой задачи. Обоснование выбора хорошо иллюстрировать по графику поглощения света окси и дезоксигемоглобина с наложенными на него кривыми спектральных характеристик излучателей.


Кривая поглощения света гемоглобином и основные спектры излучения пульсовых фотоплетизмаграфических датчиков.

Выбор длины волны зависит от того, что мы хотим измерить пульс и/или сатурацию насыщения крови кислородом SO2.

Просто пульс. Для этого случая важна область, где поглощение максимально – это диапазон от 500 до 600 нм, не считая максимума в ультрафиолетовой части. Обычно выбирается значение 525 нм (зеленый цвет) или с небольшим смещением – 535 нм (применено в датчике OSRAM SFH 7050 – Photoplethysmography Sensor).


Зеленый светодиод датчика пульса – самых ходовой вариант в смарт-часах и браслетах. В датчике смартфона Samsung Galaxy S5 использован красный светодиод.

Оксиметрия. В этом режиме необходимо мерить пульс и оценивать сатурацию крови кислородом. Способ основан на разнице в поглощении связанного (окси) и не связанного с (дезоки) кислородом гемоглобина. Максимум поглощения деоксигенированного гемоглобина (Hb) находится в “красном” (660 нм) диапазоне, максимум поглощения оксигенированного (Hb02) гемоглобина в инфракасном (940 нм). Для вычисления пульса используется канал с длиной волны 660 нм.

Желтый для EMVIO. Для нашего прибора EMVIO мы выбирали из двух диапазонов: 525 nm и 590 нм (желтый цвет). При этом мы учитывали максимум спектральной чувствительности нашего оптического датчика. Эксперименты показали, что разницы между ними практически нет (в рамках нашей конструкции и выбранного датчика). Любую разницу перебивают артефакты движения, индивидуальные свойства кожи, толщина подкожного слоя запястья и степень прижатия датчика к коже. Мы захотели как-то выделиться из общего “зеленого” списка и пока остановились на желтом цвете.

Конечно, измерения можно проводить не только с запястья. Есть на рынке нестандартные варианты выбора точки регистрации пульса. Например, со лба. Такой подход использован в проекте умного шлема для велосипедистов Life beam Smart helmet разработаного Израильской компанией Lifebeam. В предложениях этой фирмы есть еще бейсболки и солнцезащитные козырьки для девушек. Если постоянно носите бейсболку, то это ваш вариант.


Велосипедист доволен, что не нужно одевать HRM ремешок.

В целом выбор точек регистрации достаточно велик: запястье, палец, мочка уха, лоб, бицпес руки, лодыжка и стопа ноги для малышей. Полное раздолье для разработчиков.

Большим плюсом оптического способа является простота реализации на современных смартфонах, где в качестве датчика используется штатная видеокамера, а в качестве излучателя – светодиод вспышки. В новом смартфоне Samsung Galaxy S5 на задней стенке корпуса, для удобства пользователя, уже имеется штатный модуль датчика пульса, возможно и другие производители будут внедрять аналогичные решения. Это может стать решающими для устройств, в которых нет непрерывной регистрации, смартфоны вберут в себя их функционал.

Новые горизонты фотоплетизмографии

Дальнейшее развитие этого способа связано с переосмыслением функционала оптического датчика и технологическими возможностями современных носимых устройств в плане обработки видеоизображений в реальном времени. В итоге имеем идею измерения пульса по видеоизображению лица. Подсветкой является естественное освещение.

Оригинальное решение, с учетом того, что видеокамера является стандартным атрибутом любого ноутбука, смартфона и даже умных часов. Идея метода раскрыта в этой работе .


Субъект N3 явно напряжен – пульс под 100 уд/мин, наверно сдает работу своему руководителю Субъекту N2. Субъект N1 просто мимо проходил.

Сначала на кадрах выделяется фрагмента лица, потом изображение раскладывается на три цветовых канала и разворачивается по временной шкале (RGB trace). Выделение пульсовой волны основано на разложение изображения методом анализа независимых компонент (ICA) и выделения частотной составляющей, связанной с модуляцией яркости пикселей под действием пульсации крови.

Лаборатория Philips Innovation реализовала аналогичный подход в виде программы Vital Signs Camera для IPhone. Весьма интересная штука. Усреднение значений конечно большое, но принципиально метод работает. Аналогичный проект развивает .


Виды экранов Vital Signs Camera.

Так что в будущем системы видеонаблюдения смогут дистанционно измерять ваш пульс. Контора АНБ возрадуется.

Окончание обзора в следующем посте “Как умные часы, спортивные трекеры и прочие гаджеты измеряют пульс? Часть 2 ”. В той части мы расскажем об более экзотических способах регистрации пульса, которые используются в современных гаджетах.

Удачи! И еще раз пригашаем вас на сайт нашего проекта EMVIO .

Теги: Добавить метки

Место крепления

Пульсометры могут крепиться на грудь и на запястье.

Нагрудные датчики крепятся с помощью специального ремня с электродной лентой. Они считывают данные с помощью электрического сопротивления. Такие модели, как правило, очень точные, и их носят лишь на тренировке, потому что в обычной жизни нагрудный ремень может мешать.

Датчики на запястье - это оптические пульсометры. Все они обладают достаточной точностью, когда их владелец находится в покое, однако для спорта лучше выбирать известные модели от зарекомендовавших себя брендов.

Хранение и представление данных

Нагрудные датчики из-за отсутствия дисплея вынуждены сохранять данные где-то ещё, в подавляющем большинстве случаев в смартфоне. Соответственно, и узнать частоту пульса можно, только заглянув в приложение.

Оптические пульсометры также обычно имеют собственное приложение или умеют синхронизироваться со сторонним спортивным софтом, однако и дисплей у них тоже есть, чтобы с удобством мониторить пульс во время тренировки.

Есть ещё замкнутые пульсометры, которые представляют собой пару «часы + нагрудный ремень». Нагрудный пульсометр синхронизируется с часами и показывает данные в режиме реального времени на дисплее. С мобильным приложением замкнутые пульсометры зачастую не синхронизируются.

Выдача информации: постоянно и эпизодически

Пульсометры для эпизодических замеров выдают информацию о пульсе по требованию и подойдут тем, кто не занимается спортом, но по каким-то причинам хочет или вынужден контролировать частоту сердечных сокращений.

Пульсометры для постоянных замеров записывают и показывают данные в режиме 24/7. Отличный вариант для спорта.

5 хороших недорогих пульсометров

Мы выбрали пять моделей, которые нам показались лучшими в своей категории по соотношению цены, качества и точности. Каждая из них принадлежит известному бренду и имеет хорошую репутацию.

Один из самых доступных нагрудных датчиков. Работает в паре со смартфоном и позволяет записывать данные в большинство спортивных приложений, среди которых Runtastic, RunKeeper, Strava, Endomondo и многие другие.

Девайс состоит из двух частей: нагрудного датчика и кардиоремня. Использовать в качестве постоянного пульсометра можно, но не очень удобно.

Это пример замкнутого пульсометра, у которого нагрудный датчик работает в паре с часами и не отдаёт информацию больше никуда. Часы и датчик заточены друг под друга, что исключает передачу ваших данных кому-либо ещё. Очень надёжная модель от одного из лидеров спортивного рынка. Интересная особенность - возможность ручной установки целевой зоны.

Оптический пульсометр, получивший признание не только спортсменов, но и конкурентов: первые пульсометры Garmin были разработаны компанией Mio Global. За время существования бренда она выпустила уже пять моделей трекеров и пульсометров.

В этом году в Россию первая версия Mio Alpha приехала по очень привлекательной цене. Высокая точность, минимальная чувствительность к помехам, устойчивое соединение и трекинг в условиях влажности (что не так часто встречается у оптики) делают эти спортивные часы одними из лучших для измерения частоты пульса.

SMA Coach

Браслет с пульсометром. Таких много, взять хотя бы тот же Xiaomi Mi Band 2. Как правило, такие модели обладают ещё кучей различных функций, не всегда нужных для спорта. При этом не все из них будут хороши как спортивные пульсометры.

SMA Coach подходит для спорта идеально: оптика здесь выносливая, при этом дополнительные функции не являются помехой. Тут можно установить режим измерения (постоянно или через заданный интервал), а расширенные возможности вроде приёма уведомлений или управления камерой превращают браслет в отличный повседневный гаджет.

Пульсометр для эпизодических замеров от LifeTrak - это высокая точность и надёжность, отличная автономность (до одного года от CR2032) и функции фитнес-часов (анализ активности и расхода калорий).

Компания LifeTrak известна и как разработчик профессионального оборудования для спортзалов, и как партнёр американских государственных учреждений, который поставляет пульсометры и другие средства мониторинга здоровья для NASA, и как поставщик фитнес-часов для New Balance. При этом и свою линейку гаджетов не забывает.

LifeTrak C400 достаточно прост в управлении и измеряет пульс по запросу. Важное отличие этого пульсометра для эпизодических замеров от иных в том, что пульс показывается в пределах минуты, пока пользователь удерживает кнопку. У большинства аналогов данные отдаются в конкретную секунду сразу после нажатия.



Статьи по теме