Метод ветвей и границ решения целочисленных задач линейного программирования. Решение задачи коммивояжера с помощью метода ветвей и границ

Общее описание

Общая идея метода может быть описана на примере поиска минимума функции на множестве допустимых значений переменной . Функция и переменная могут быть произвольной природы. Для метода ветвей и границ необходимы две процедуры: ветвление и нахождение оценок (границ).

Процедура ветвления состоит в разбиении множества допустимых значений переменной на подобласти (подмножества) меньших размеров. Процедуру можно рекурсивно применять к подобластям. Полученные подобласти образуют дерево , называемое деревом поиска или деревом ветвей и границ . Узлами этого дерева являются построенные подобласти (подмножества множества значений переменной ).

Процедура нахождения оценок заключается в поиске верхних и нижних границ для решения задачи на подобласти допустимых значений переменной .

В основе метода ветвей и границ лежит следующая идея: если нижняя граница значений функции на подобласти дерева поиска больше, чем верхняя граница на какой-либо ранее просмотренной подобласти , то может быть исключена из дальнейшего рассмотрения (правило отсева ). Обычно, минимальную из полученных верхних оценок записывают в глобальную переменную ; любой узел дерева поиска, нижняя граница которого больше значения , может быть исключен из дальнейшего рассмотрения.

Если нижняя граница для узла дерева совпадает с верхней границей, то это значение является минимумом функции и достигается на соответствующей подобласти.

Применение

Метод используется для решения некоторых NP-полных задач, таких как:

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Метод ветвей и границ" в других словарях:

    метод ветвей и границ - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва] Тематики электротехника, основные понятия EN branch and bound method … Справочник технического переводчика

    метод - метод: Метод косвенного измерения влажности веществ, основанный на зависимости диэлектрической проницаемости этих веществ от их влажности. Источник: РМГ 75 2004: Государственная система обеспечения еди … Словарь-справочник терминов нормативно-технической документации

    Оптимальный маршрут коммивояжёра через 15 крупнейших городов Германии. Указанный маршрут является самым коротким из всех возможных 43 589 145 600. Задача коммивояжёра (англ. Travelling salesman problem, TSP) (коммивояжёр … Википедия

    У этого термина существуют и другие значения, см. Перебор. Полный перебор (или метод «грубой силы», англ. brute force) метод решения математических задач. Относится к классу методов поиска решения исчерпыванием всевозможных… … Википедия

    Пример задачи о ранце: необходимо разместить ящики в рюкзак при условии на вместимость рюкзака 15 кг, так чтобы суммарная полезность предметов в рюкзаке была максимальной. Задача о ранце (рюкзаке) (англ. … Википедия

    Задача коммивояжёра (коммивояжёр бродячий торговец) является одной из самых известных задач комбинаторной оптимизации. Задача заключается в отыскании самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с… … Википедия

    Задача коммивояжёра (коммивояжёр бродячий торговец) является одной из самых известных задач комбинаторной оптимизации. Задача заключается в отыскании самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с… … Википедия

    Задача коммивояжёра (коммивояжёр бродячий торговец) является одной из самых известных задач комбинаторной оптимизации. Задача заключается в отыскании самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с… … Википедия

    В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

Книги

  • Разработка программного средства для поиска оптимального портфеля оптовых закупок торгового предприятия , А. В. Мищенко. В рамках настоящей работы разработано программное средство для решения задачи поиска оптимального портфеля оптовых закупок предприятия розничной торговли. При этом использован метод ветвей и…

Метод ветвей и границ относится к комбинаторным методам решения целочисленных задач и применим как к полностью, так и к частично целочисленным задачам.

Суть метода ветвей и границ – в направленном частичном переборе допустимых решений. Будем рассматривать . Вначале она решается без ограничений на целочисленность. При этом находится верхняя граница F(x), так как целочисленное решение не может улучшить значение функции цели.

Далее в методе ветвей и границ область допустимых значений переменных (ОДЗП) разбивается на ряд непересекающихся областей (ветвление), в каждой из которых оценивается экстремальное значение функции. Если целое решение не найдено, ветвление продолжается.

Ветвление производится последовательным введением дополнительных ограничений. Пусть x k – целочисленная переменная, значение которой в оптимальном решении получилось дробным. Интервал [β k ] ≤ x k ≤ [β k ]+1 не содержит целочисленных компонентов решения. Поэтому допустимое целое значение x k должно удовлетворять одному из неравенств x k ≥[β k ]+1 или x k ≤[β k ]. Это и есть дополнительные ограничения. Введение их в методе ветвей и границ на каждом шаге порождает две не связанные между собой подзадачи. Каждая подзадача решается как задача линейного программирования с исходной целевой функцией. После конечного числа шагов будет найдено целочисленное оптимальное решение.

Применение метода ветвей и границ рассмотрим на конкретном примере.

Пример 1. Методом ветвей и границ F(x) = 2x 1 + 3x 2 при ограничениях

3x 1 +4x 2 ≤24

2x 1 +5x 2 ≤22

x 1,2 ≥0 - целые

1-й шаг метода ветвей и границ. с отброшенными условиями целочисленности с помощью симплекс-метода (табл. 1 – 3).

По данным табл. 3 запишем оптимальное нецелое решение

; x * 2 =2 4 ; F max =16 6
7 7

Таблица 1 - симплекс-таблица для задачи ЛП

Таблица 2 - симплекс-таблица для задачи ЛП

Таблица 3 - симплекс-таблица для задачи ЛП

Графическая интерпретация задачи приведена на рис. 1. Здесь ОДЗП представлена четырехугольником ABCD, а координаты вершины С совпадают с x * 1 и x * 2 . Обе переменные в оптимальном решении являются нецелыми, поэтому любая из них может быть выбрана в качестве переменной, инициирующей процесс ветвления.

Пусть это будет x 2 . Выбор x 2 порождает две подзадачи (2 и 3), одна из них получается путем добавления ограничения x 2 ≥3 к исходной задаче, а другая – путем добавления ограничения x 2 ≤2. При этом ОДЗП разбивается на две заштрихованные области (рис. 1), а полоса значений 2 < x 2 < 3 исключается из рассмотрения. Однако множество допустимых целочисленных решений сохраняется, порожденные подзадачи содержат все целочисленные решения исходной задачи.

Рисунок 1 - графическая интерпритация решения примера методом ветвей и границ

2-й шаг метода ветвей и границ. Осуществляется выбор одной из обозначенных ранее подзадач. Не существует точных методов определения, какой из подзадач отдать предпочтение. Случайный выбор приводит к разным последовательностям подзадач и, следовательно, к различным количествам итераций, обеспечивающих получение оптимального решения.

Пусть вначале решается подзадача 3 с дополнительным ограничением x 2 ≤2 или x 2 + x 5 = 2 . Из табл. 3 для переменной x 2 справедливо следующее выражение -2/7x 3 +3/7x 4 +x 2 =18/7 или x 2 =18/7+2/7x 3 -3/7x 4 , тогда 2/7x 3 -3/7x 4 +x 5 =-4/7 . Включаем ограничение в табл. 3, при этом получим новую таблицу (табл. 4).

Осуществляя оптимизацию решения, переходим к табл. 5, которой соответствует решение

; x * 2 =2 ; F max =16 2
3

Переменная x 1 нецелая, поэтому ветвление необходимо продолжить; при этом возникают подзадачи 4 и 5 с ограничениями x 1 ≤5 и x 1 ≥6 соответственно. Полоса значений 5 < x 1 < 6 исключается из рассмотрения.

Таблица 5 - симплекс-таблица для задачи ЛП

3-й шаг метода ветвей и границ. Решаются подзадачи 4 и 5. Из рис. 1 видно, что оптимальное целочисленное решение подзадачи 4 достигается в вершине К с координатами x * 1 =5, x * 2 =2, однако это не означает, что найден оптимум исходной задачи. Причиной такого вывода являются еще не решенные подзадачи 3 и 5, которые также могут дать целочисленные решения. Найденное целочисленное решение F = 16 определяет нижнюю границу значений целевой функции, т.е. меньше этого значения оно быть не должно.

Подзадача 5 предполагает введение дополнительного ограничения x 1 ≥6 в подзадачу 3 . Графическое решение на рис. 1 определяет вершину L с координатами x * 1 =6, x * 2 =3/2 , в которой достигается оптимальное решение подзадачи 5: F max = 16.5 . Дальнейшее ветвление в этом направлении осуществлять нецелесообразно, так как большего, чем 16, целого значения функции цели получить невозможно. Ветвление подзадачи 5 в лучшем случае приведёт к другому целочисленному решению, в котором F = 16.

4-й шаг метода ветвей и границ. Исследуется подзадача 2 с ограничением x 2 ≥3, находится её оптимальное решение, которое соответствует вершине М (рис. 1) с координатами x * 1 =3.5, x * 2 =3. Значение функции цели при этом F max =16, которое не превышает найденного ранее решения. Таким образом, поиск вдоль ветви x 2 ≥3 следует прекратить.

Отметим, что алгоритм метода ветвей и границ является наиболее надёжным средством решения целочисленных задач, он положен в основу большинства прикладных программ для ПЭВМ, используемых для этих целей.

Для решения задач линейного программирования имеется широкий набор разнообразных машинных программ, которые избавляют от трудоёмкого процесса вычислений вручную. Однако интерпретация информации, выведенной на печать, невозможна без чёткого представления о том, почему и как работает .

Впервые метод ветвей и границ был предложен в 1960 г. в работе Лэнд и Дойг применительно к задаче целочисленного линейного программирования. Однако эта работа не оказала заметного непосредственного влияния на развитие дискретного программирования. Фактически «второе рождение» метода ветвей и границ связано с работой Литтла, Мурти, Суини и Кэрел , посвященной задаче коммивояжера; в этой же работе было впервые предложено и общепринятое теперь название метода «метод ветвей и границ». Начиная с этого момента появляется весьма большое число работ, посвященных методу ветвей и границ и различным его модификациям. Столь большой успех (да еще применительно к «классически трудной» задаче о коммивояжере) объясняется тем, что Литтл, Мурти, Суини и Кэрел первыми обратили внимание на широту возможностей метода ветвей и границ, отметили важность использования специфики задачи и сами весьма удачно этой спецификой воспользовались.

В § 1 настоящей главы излагается общая идея метода ветвей и границ; в § 2 - алгоритм Лэнд и Дойг для задачи целочисленного линейного программирования, в § 3 - метод Литтла и др. авторов для задачи коммивояжера.

§ 1. Идея метода ветвей и границ

1.1. Рассмотрим задачу дискретного программирования в следующей общей форме.

Минимизировать

при условии

Здесь G - некоторое конечное множество.

1.2. В основе метода ветвей и границ лежат следующие построения, позволяющие в ряде случаев существенно уменьшить объем перебора.

I. Вычисление нижней границы (оценки).

Часто удается найти нижнюю границу (оценку) целевой функции на множестве планов (или на некотором его подмножестве т. е. такое число что для имеет место

(соответственно для имеет место Разбиение на подмножества (ветвление). Реализация метода связана с постепенным разбиением множества планов на дерево подмножеств (ветвлением). Ветвление происходит по следующей многошаговой схеме.

0-й шаг. Имеется множество Некоторым способом оно разбивается на конечное число (обычно не пересекающихся) подмножестве шаг Имеются множества , еще не подвергавгпиеся ветвлению. По некоторому правилу (указанному ниже) среди них выбирается множество и разбивается на конечное число подмножеств:

Еще не подвергавшиеся разбиению множества

заново обозначаются через

Несколько шагов такого процесса последовательного разбиения схематически изображены на рис. 10.1.1.

III. Пересчет оценок. Если множество то, очевидно,

Поэтому, разбивая в процессе решения некоторое множество на подмножества

В конкретных ситуациях часто оказывается возможным добиться улучшения оценки, т. е. получить хотя бы для некоторых строгое неравенство

IV. Вычисление планов. Для конкретных задач могут быть указаны различные способы нахождения планов в последовательно разветвляемых подмножествах. Любой такой способ существенно опирается на специфику задачи.

V. Признак оптимальности. Пусть

и план X принадлежит некоторому подмножеству Если при этом

то X - оптимальный план задачи (1.1) - (1.2).

Доказательство непосредственно следует из определения оценки.

Обычно этот признак применяется на некотором этапе ветвления (т. е., говоря формально, при ; см. п. II).

VI. Оценка точности приближенного решения. Пусть

Если X - некоторый план исходной задачи (т. е. ), то

Доказательство и здесь сразу следует из определения оценки.

Очевидно, что если разность невелика (т. е. не превышает некоторого выбранного для данной задачи числа), то X можно принять за приближенное решение, за оценку точности приближения.

1.3. Изложим формальную схему метода ветвей и границ.

0-й шаг. Вычисляем оценку . Если при этом удается найти такой план X, что

то X - оптимальный план.

Если оптимальный план не найден, то по некоторому способу разбиваем множество на конечное число подмножеств

и переходим к шагу.

1-й шаг. Вычисляем оценки Если при этом удается найти такой план X, что для некоторого и

то X - оптимальный план.

Если же оптимальный план не найден, то выбираем «наиболее перспективное» для дальнейшего разбиения множество по следующему правилу:

Разбиваем множество на несколько (обычно не пересекающихся) подмножеств.

Требуется решить следующую задачу:

max 2х 1 + х 2

5х 1 + 2х 2 10

3х 1 + 8х 2 13

Вначале решим эту задачу графически без ограниченийцелочисленности. Решение может быть найдено как симплекс-методом, так и графически. Найдем его графически (рисунок 4). Координаты точки оптимума можно найти, решив систему уравнений: 5х 1 + 2х 2 = 10 х 1 =27/17

3х 1 + 8х 2 = 13 х 2 =35/34

Х G = (27/17;35/34), z G =143/34

Рисунок 4 - Графическое решение задачи без ограничений целочиелейности

Начнем строить дерево, первая вершина которого будет соответствовать всей ОДП нецелочисленной задачи (G), а ее оценка будет равна z G (рис.5).

Рисунок 5 - Схема метода ветвей и границ

Полученный план не является целочисленным, поэтому возьмем его произвольную нецелочисленную компоненту, например, первую (х 1 Z; [х 1 ] = = 1) и разобьем ОДП на две части следующим образом:

G 1 ={XG: х 1 1}

G 2 ={XG: х 1 2}

Это означает, что в область G 1 войдут все точки из G, у которых абсцисса не больше 1, а в G 2 - у которых она не меньше 2. Точки с дробными значениями абсциссы от 1 до 2 исключены из рассмотрения.

Изобразим эти области на графике (рисунок 6).

Из рисунка 6 видно, что G 2 представляет собой одну точку Х G 2 =(2;0), следовательно, на этом множестве оптимум задачи равен 4 ( 2 =4).

План Х G 2 является целочисленным, следовательно, решение целочисленной задачи уже, возможно, найдено. Однако, следует еще найти оценку множества G 1 |. Она может оказаться не менее 4 (но обязательно не более 143/34). Если это так, то нужно проверить, не является ли целочисленным решение задачи на G 1. Если оно целое, то является решением задачи, а если нет, то процесс решения необходимо продолжить, разбивая G 1

Рисунок 6 - Разбиение множества на части

На G 1 точку оптимума можно найти, решив систему уравнений:

х 1 = 1 х 1 =1

3х 1 + 8х 2 = 13 х 2 =5/4

Х G 1 = (1; 5/4), z G =13/4

Оценка меньше 4, следовательно, решением задачи является Х * =Х G 2 =(2;0),z * =4.

3.4 Решение задачи целочисленного линейного программирования методом ветвей и границ с помощью ппп «Система деловых задач»

ЗЦЛП можно решить с помощью пакета прикладных программ “Quantitative Systems for Business” ("Система деловых задач") . Соответствующая программа запускается файлом intlprog.ехе. Она решает как частично, так и полностью целочисленные задачи линейного программирования с числом переменных и ограничений до 20, используя метод ветвей и границ. В том числе решаются и задачи с булевыми переменными (т.е. с переменными, которые могут принимать одно из двух значений - 0 или 1; как, например, в задаче о назначениях ). По умолчанию все переменные неотрицательны. Программа позволяет ввести целочисленные границы для переменных, не включая их в общее число ограничений. По умолчанию нижняя граница 0, а верхняя 32000. Если необходимо установить нецелочисленные границы, их вводят, как обычные ограничения.

Если в задаче имеется несколько оптимальных планов, из них находится только один. Информация о наличии множественного решения не выводится.

Режим 2 (ввод новой задачи) включает три этапа. На первом этапе осуществляют ввод информации о размерности задачи, направлении экстремизации и именах переменных (по умолчанию XI, Х2,..., Хn).

На втором этапе необходимо определить, являются ли все переменные целочисленными, являются ли все переменные булевыми, и будут ли вводиться границы для переменных. При ответе «нет» на первый вопрос или «да» на третий, выводится таблица (рисунок 7):

Введите предел и границы для переменных

(По умолчанию значения нижней границы 0 и верхней границы 32000)

№ перем. Имя Предел (I/C) Нижняя гр. Верхняя гр.

1 X 1 <0 > <0 >

2 X 2 <0 > <0 >

Рисунок 7 - Определение пределов и границ

Установив I (integer) в столбце «Предел», на переменную накладывают ограничение целочисленности. В противном случае (С, continuous) -переменная может принимать и нецелые значения, т.е. является непрерывной.

Значения границ округляются до целых. Если нижняя больше верхней, выдается сообщение об ошибке.

На третьем этапе вводятся коэффициенты при переменных и знаки в ограничениях.

В меню решений имеется возможность исправить целочисленную погрешность (по умолчанию она 0,001).

Решение задачи методом ветвей и границ не сопровождается графической иллюстрацией (изображением дерева) в программе, но для пояснения алгоритма приведем такую иллюстрацию на рисунок 8.

Алгоритм метода ветвей и границ, реализованный в данной программе, несколько отличается от рассмотренного выше в методических указаниях и является менее эффективным в том смысле, что может потребовать большего числа итераций. Тем не менее, его полезно рассмотреть, чтобы наглядно проиллюстрировать разницу в подходах. Кроме того, во многих учебных пособиях применение метода ветвей и границ рассматривается именно на примере данной его модификации.

Основное различие заключается в том, что здесь на каждом этапе не выбирается наиболее «перспективное» подмножество. После того, как очередное подмножество разбито на две части, не подсчитывают сразу оценку обеих частей, а вместо этого каждая ветвь дерева последовательно рассматривается до конца. Исходная ОДП разбивается на подмножества по первой нецелочисленной переменной в оптимальном плане нецелочисленной задачи. Затем рассматривают ту вершину, которой соответствует знак , разбивают соответствующее подмножество так же, как и исходную ОДП, снова рассматривают ту вершину, которой соответствует знак , и т.д. до тех пор, пока не будет получен целочисленный план, или задача окажется неразрешимой. Только после этого возвращаются к рассмотрению вершин, которым соответствовал знак .

При этом на каждой итерации выводится информация о текущих целочисленных границах (определяющих рассматриваемое подмножество), оптимальном плане нецелочисленной задачи, о том, является ли он целочисленным, о значении целевой функции (ЦФ) на нем и о величинах ZL или ZU. Для задачи на максимум выводится значение нижней границы ZL, а на минимум верхней ZU. До тех пор, пока не найдено какое-нибудь целое решение, ZL =-1*10 20 , а ZU = 1*10 20 .

После нахождения целочисленного плана нельзя сразу судить о том, является ли он оптимальным, так как рассматривались не наиболее перспективные вершины. Но можно в уверенностью утверждать, что искомый максимум не меньше (а минимум не больше) значения целевой функции на целочисленном плане. Поэтому значения границ ZL и ZU изменяются (если только ранее не был найден целочисленный план с не меньшим (не большим) значением целевой функции).

Ветви с оценкой, меньшей ZL или большей ZU, не рассматриваются. План, соответствующий границе, запоминается. После того, как рассмотрены или исключены из рассмотрения все подмножества, этот план можно считать оптимальным.

Поясним это на примере (рис.8):

max 3х 1 + 2х 2

7х 1 + 5х 2 35

9х 1 + 4х 2 36

На первой итерации найдено нецелочисленное решение Х=(2,353; 3,706). Вся ОДП (множество G) разбивается на два подмножества - G 1 и G 2 следующим образом:

G 1 ={XG: х 1 3}

G 2 ={XG: х 1 2}.

На второй итерации решают задачу на подмножестве G 1 . Полученное решение также нецелочисленно. Далее, вместо того, чтобы рассмотреть подмножество G 2 , продолжают рассматривать G 1 . В соответствующем плане выбирают первую по счету нецелочисленную компоненту (это х 2) и разбивают G 1 на G 3 и G 4 . На третьей итерации рассматривают G 3 - на этом подмножестве допустимых планов нет. Только после этого на четвертой итерации рассматривается вторая ветвь, выходящая из G 1 - подмножество G 4 . Далее аналогично.

На пятой итерации на подмножестве G 5 найдено целочисленное решение, которому соответствует значение целевой функции 12. На следующей итерации это значение присваивается величине ZL, которая до этого была равна -1*10 20 . Соответствующий план запоминается - он может оказаться оптимальным. Но на шестой итерации снова получен целочисленный план, целевая функция на котором равна 13 (больше 12) - ZL снова изменяется, запоминается новый план.

После этого, на седьмой итерации, переходят к рассмотрению подмножества G 2 , которое разбивают на G 7 и G 8 .

На тринадцатой итерации (подмножество G 14) снова найдено целочисленное решение Х=(0; 7), целевая функция на нем равна 14. Снова изменяется ZL и запоминается соответствующий план.

План, найденный на четырнадцатой итерации, также является целочисленным, но его не запоминают, так как 13<14 (ZL=14). План, найденный на пятнадцатой итерации, тоже, к сожалению, не запоминается, так как 1414, а программа ставит своей целью найти хотя бы одно решение.

Наличие других оптимальных планов здесь игнорируется.

Таким образом, решение Х=(0; 7) получено за 15 итераций.

Отметим, что если бы использовался более эффективный вариант метода ветвей и границ, схема которого описана в методических указаниях, то после второй итерации произошел бы сразу переход к седьмой. В самом деле, если рассматривать значения целевой функции на соответствующих планах в качестве оценки подмножеств, то оценка G 2 выше. Поэтому итерации с 3-ей по 6-ю оказываются лишними, и общее число итераций могло быть равно 11.

Метод ветвей и границ − один из комбинаторных методов. В отличие от метода Гомори применим как к полностью, так и частично целочисленнным задачам.

Его суть заключается в упорядоченном переборе вариантов и рассмотрении лишь тех из них, которые оказываются по определенным признакам полезными для нахождения оптимального решения.

Идея метода ветвей и границ состоит в следующем: пусть решена ослабленная задача без ограничения целочисленности, и - целочисленная переменная, значение которой в оптимальном плане является дробным. Тогда интервал

не содержит допустимых решений с целочисленной координатой . Следовательно, допустимое целое значениедолжно удовлетворять

или
, или

Введение этих условий в задачу порождает две несвязанные между собой задачи с одной и той же целевой функцией, но непересекающимися областями допустимых значений переменных. В этом случае говорят, что задача разветвляется.

Очевидно, что возможен один из следующих четырех случаев.

    Одна из задач неразрешима, а другая имеет целочисленный оптимальный план. Тогда этот план и значение целевой функции на нем и дают решение исходной задачи.

    Одна из задач неразрешима, а другая имеет оптимальный план, среди компонент которого есть дробные числа. Тогда рассматриваем вторую задачу и в ее оптимальном плане выбираем одну из компонент, значение которой равно дробному числу, и строим две задачи на новых ограничениях по этой переменной, полученных разделением ее ближайших к решению целочисленных значений.

    Обе задачи разрешимы. Одна из задач имеет оптимальный целочисленный план, а в оптимальном плане другой задачи есть дробные числа. Тогда вычисляем значения целевой функции на этих планах и сравниваем их между собой. Для определенности здесь и далее полагаем, что решается задача о максимуме целевой функции. Если на целочисленном оптимальном плане значение целевой функции больше или равно ее значению на плане, среди компонент которого есть дробные числа, то данный целочисленный план является оптимальным для исходной задачи и вместе со значением целевой функции на нем дает искомое решение.

Если же значение целевой функции больше на плане, среди компонент которого есть дробные числа, то следует взять одно из таких чисел и для задачи, план которой рассматривается, произвести ветвление по дробной переменной и построить две новые задачи.

    Обе задачи разрешимы, и среди оптимальных планов обеих задач есть дробные числа. Тогда вычисляем значение целевой функции на данных оптимальных планах и рассматриваем ту из задач, для которой значение целевой функции является наибольшим. В оптимальном плане этой задачи выбираем одну из компонент, значение которой является дробным числом, и производим ветвление на две новые задачи, разбивая область изменения этой переменной на две, ограниченные целыми числами справа и слева соответственно.

Таким образом, процесс построения все новых и новых задач может быть представлен на рисунке в виде ветвистого дерева, с вершиной, обозначенной «задача 1», и отходящими от этой вершины ветвями. Такая последовательность действий при нахождении оптимального решения задачи целочисленного программирования нашла свое отражение в названии этого метода.

Исходная вершина отвечает оптимальному плану исходной задачи 1, а каждая соединенная с ней ветвью вершина отвечает оптимальным планам новых задач, построенных для новых ограничений по одной из переменных, имеющих в оптимальном плане задачи 1 значение в виде дробного числа.

Каждая из вершин имеет свои ответвления, при этом на каждом шаге выбирается та вершина, для которой значение целевой функции будет наибольшим.

Если на некотором шаге будет получен план, имеющий целочисленные значения, и значение функции на нем окажется больше или равно, чем значение функции в других возможных для ветвления вершинах, то данный план является оптимальным планом исходной задачи целочисленного программирования и значение целевой функции на нем является максимальным.

Пример . Найти методом ветвей и границ решение задачи целочисленного программирования

Решение . Находим оптимальный план сформулированной задачи симплексным методом без учета целочисленности переменных, а именно решаем задачу 1.

Оптимальный план задачи 1 линейного программирования

при
.

Для исходной задачи, с учетом целочисленности переменных, полученное решение не является оптимальным.

Для поиска целочисленного оптимального решения разделим интервал изменения переменной x 1 на две области, а именно x 1  и x 1 = 10 , и разобьем заданную задачу на две новые задачи.

Нижняя граница линейной функции не изменилась: Z 0 = 0. Решаем одну из задач, например задачу 3, симплексным методом. Получаем, что условия задачи противоречивы.

Решаем задачу 2 симплексным методом. Получаем оптимальный целочисленный план поставленной задачи 2, который является также оптимальным планом задачи 1:

при
.

Таким образом, в результате одного ветвления задачи было найдено ее оптимальное решение.



Статьи по теме