Компьютерное моделирование". Компьютерное моделирование

Метод моделирования в качестве научного исследования стал применяться еще в глубокой древности и постепенно захватывал все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, информационные технологии. Методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин модель широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений.

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале. Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.

Процесс моделирования включает три элемента:

1) субъект (исследователь),

2) объект исследования,

3) модель, опосредствующую отношения познающего субъекта и познаваемого объекта.

Пусть имеется или необходимо создать некоторый объект А. Мы конструируем (материально или мысленно) или находим в реальном мире другой объект В - модель объекта А. Этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обуславливаются тем, что модель отражает какие-либо существенные черты объекта-оригинала. Вопрос о необходимости и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом, так и в случае чрезмерного во всех существенных отношениях отличия от оригинала .

Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько "специализированных" моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

Рис. 1 – Этапы компьютерного моделирования

Этапы компьютерного моделирования можно представить в виде схемы (рис. 1).

Моделирование начинается с объекта изучения. На первом этапе формируются законы, управляющие исследованием, происходит отделение информации от реального объекта, формируется существенная информация, отбрасывается несущественная. Преобразование информации определяется решаемой задачей. Информация, существенная для одной задачи, может оказаться несущественной для другой. Потеря существенной информации приводит к неверному решению или не позволяет вообще получить решение. Учет несущественной информации вызывает излишние сложности, а иногда создает непреодолимые препятствия на пути к решению. Переход от реального объекта к информации о нем осмыслен только тогда, когда поставлена задача. В то же время постановка задачи уточняется по мере изучения объекта. Таким образом, на первом этапе процессы целенаправленного изучения объекта и уточнения задачи происходят параллельно и независимо друг от друга. Также на этом этапе информация об объекте подготавливается к обработке на компьютере. Строится так называемая формальная модель явления, которая содержит:

    набор постоянных величин, констант, которые характеризуют моделируемый объект в целом и его составные части, называемые статистическими или постоянными параметрами модели;

    набор переменных величин, меняя значение которых можно управлять поведением модели, называемых динамическим или управляющими параметрами;

    формулы и алгоритмы, связывающие величины в каждом из состояний моделируемого объекта;

    формулы и алгоритмы, описывающие процесс смены состояний моделируемого объекта.

На втором этапе формальная модель реализуется на компьютере, выбираются подходящие программные средства для этого, строиться алгоритм решения проблемы, пишется программа, реализующая этот алгоритм, затем написанная программа отлаживается и тестируется на специально подготовленных тестовых моделях . Тестирование - это процесс исполнения программы с целью выявления ошибок. Подбор тестовой модели - это своего рода искусство, хотя для этого разработаны и успешно применяются некоторые основные принципы тестирования. Тестирование - это процесс деструктивный, поэтому считается, что тест удачный, если обнаружена ошибка. Проверить компьютерную модель на соответствие оригиналу, проверить насколько хорошо или плохо отражает модель основные свойства объекта, часто удается с помощью простых модельных примеров, когда результат моделирования известен заранее.

На третьем этапе, работая с компьютерной моделью, мы осуществляем непосредственно вычислительный эксперимент. Исследуем, как поведет себя наша модель в том или ином случае, при тех или иных наборах динамических параметров, пытаемся прогнозировать или оптимизировать что-либо в зависимости от поставленной задачи.

Результатом компьютерного эксперимента будет являться информационная модель явления, в виде графиков, зависимостей одних параметров от других, диаграмм, таблиц, демонстрации явления в реальном или виртуальном времени и т.п.

Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.

Компьютерное моделирование, возникшее как одно из направлений математического моделирования с развитием информационных компьютерных технологий стало самостоятельной и важной областью применения компьютеров. В настоящее время компьютерное моделирование в научных и практических исследованиях является одним из основных методов познания. Без компьютерного моделирования сегодня невозможно решение крупных научных задач. Выработана технология исследования сложных проблем, основанная на построении и анализе с помощью вычислительной техники математической модели изучаемого объекта. Такой метод исследования называется вычислительным экспериментом. Вычислительный эксперимент применяется практически во всех отраслях науки - в физике, химии, астрономии, биологии, экологии, даже в таких сугубо гуманитарных науках как психология, лингвистика и филология. Проведение вычислительного эксперимента имеет ряд преимуществ перед так называемым натурным экспериментом:

    для вычислительного эксперимента не требуется сложного лабораторного оборудования;

    существенное сокращение временных затрат на эксперимент;

    возможность свободного управления параметрами, произвольного их изменения, вплоть до придания им нереальных, неправдоподобных значений;

    возможность проведения вычислительного эксперимента там, где натурный эксперимент невозможен из-за удаленности исследуемого явления в пространстве (астрономия) либо из-за его значительной растянутости во времени (биология), либо из-за возможности внесения необратимых изменений в изучаемый процесс.

В этих случаях и используется компьютерное моделирование. Также широко используется компьютерное моделирование в образовательных и учебных целях. Компьютерное моделирование - наиболее адекватный подход при изучении предметов естественнонаучного цикла, изучение компьютерного моделирования открывает широкие возможности для осознания связи информатики с математикой и другими науками - естественными и социальными. Учитель может использовать на уроке готовые компьютерные модели для демонстрации изучаемого явления, будь это движение астрономических объектов или движение атомов или модель молекулы или рост микробов и т.д.. Также учитель может озадачить учащихся разработкой конкретных моделей, моделируя конкретное явление, студент не только освоит конкретный учебный материал, но и приобретет умение ставить проблемы и задачи, прогнозировать результаты исследования, проводить разумные оценки, выделять главные и второстепенные факторы для построения моделей, выбирать аналогии и математические формулировки, использовать компьютер для решения задач, проводить анализ вычислительных экспериментов. Таким образом, применение компьютерного моделирования в образовании позволяет сблизить методологию учебной деятельности с методологией научно-исследовательской работы.

Понятие моделирования - это очень широкое понятие, оно не ограничивается только математическим моделированием. Истоки моделирования обнаруживаются в далеком прошлом. Наскальные изображения мамонта, пронзенного копьем, на стене пещеры можно рассматривать как модель удачной охоты, созданную древним художником.

Элементы моделирования часто присутствуют в детских играх, любимое занятие детей - моделировать подручными средствами предметы и отношения из жизни взрослых. Взрослеют дети, взрослеет человечество. Человечество познает окружающий мир, модели становятся более абстрактными, теряют внешнее сходство с реальными объектами. В моделях отражаются глубинные закономерности, установленные в результате целенаправленных исследований. В роли моделей могут выступать самые разнообразные объекты: изображения, схемы, карты, графики, компьютерные программы, математические формулы и т.д. Если мы заменяем реальный объект математическими формулами - допустим, согласно Второму закону Ньютона, опишем движение некоторого тела системой нелинейных уравнений, или, согласно закону теплопроводности опишем процесс распространения тепла дифференциальным уравнение второго порядка, - то говорят о математическом моделировании, если реальный объект заменяем компьютерной программой - о компьютерном моделировании.

Но что бы ни выступало в роли модели, постоянно прослеживается процесс замещения реального объекта с помощью объекта-модели с целью изучения реального объекта или передачи информации о свойствах реального объекта. Это процесс и называется моделированием. Замещаемый объект называется оригиналом, замещающий – моделью (рис. 2).

Рис. 2 – Элементы моделирования

КОМПЬЮ́ТЕРНОЕ МОДЕЛИ́РОВАНИЕ (англ. computational simulation), построение с помощью компьютеров и компьютерных устройств (3D-сканеров, 3D-принтеров и др.) символьных [см. Символьное моделирование (s-моделирование)] и физических моделей объектов, изучаемых в науке (физике, химии и др.), создаваемых в технике (напр., в авиастроении, робототехнике), медицине (напр., в имплантологии, томографии ), искусстве (напр., в архитектуре , музыке) и др. областях деятельности людей.

К. м. позволяет многократно сократить затраты на разработку моделей по сравнению с некомпьютерными методами моделирования и проведением натурных испытаний. Оно делает возможным построение символьных компьютерных моделей объектов, для которых невозможно построить физические модели (напр., моделей объектов, изучаемых в климатологии ). Служит эффективным средством моделирования сложных систем в технике, экономике и др. областях деятельности. Является технологической основой систем автоматизированного проектирования (САПР).

Физические компьютерные модели изготавливаются на основе символьных моделей и являются прототипами моделируемых объектов (деталей и узлов машин, строительных конструкций и др.). Для изготовления прототипов могут быть применены 3D-принтеры, реализующие технологии послойного формирования неплоских объектов. Символьные модели прототипов могут быть разработаны с помощью САПРов, 3D-сканеров или цифровых камер и фотограмметрического программного обеспечения.

Система К. м. – это человеко-машинный комплекс, в котором построение моделей осуществляется с помощью компьютерных программ, реализующих математические (см. Моделирование математическое ) и экспертные (напр., имитационные) методы моделирования. В режиме вычислительного эксперимента исследователь имеет возможность, изменяя исходные данные, за относительно короткое время получить и сохранить в системе компьютерного моделирования большое число вариантов модели объекта.

Уточнение представлений об исследуемом объекте и совершенствование методов его моделирования могут сделать необходимым изменение программных средств системы компьютерного моделирования, а аппаратные средства при этом могут остаться без изменений.

Высокая результативность компьютерного моделирования в науке, технике и др. областях деятельности стимулирует развитие аппаратных средств (включая суперкомпьютеры) и программного обеспечения [в т. ч. инструментальных систем (см. Инструментальная система в информатике ) разработки параллельных программ для суперкомпьютеров].

В наши дни компьютерные модели – быстро растущая часть арсенала

Нет абсолютно никаких сомнений в том, что компьютерное моделирование различных физических процессов значительно ускорило процесс разработки технической продукции, при этом позволило сэкономить разработчикам неплохие деньги на сборке испытательных моделей. С помощью современных вычислительных мощностей и программного обеспечения инженеры могут моделировать работу отдельных компонентов и узлов сложных систем, что позволит снизить количество проводимых физических испытаний, которые необходимы перед запуском нового продукта. Также производители могут провести подсчет стоимости разработки после проведения моделирования с помощью CAD систем, а не ждать конца физических испытаний продукта.

Современная промышленность при запуске новых продуктов сталкивается с такими проблемами как время на разработку нового изделия и стоимость разработки. А в автомобилестроении и аэрокосмической отрасли без CAD моделирования практически невозможно обойтись, так как моделирование помогает значительно ускорить разработку и снизить затраты, что очень важно на современном рынке. Исторически сложилось, что появление современных вычислительных систем, которые способны моделировать динамические свойства объектов при различных воздействиях, отодвинуло на второй план модернизацию стендов для физических испытаний, а также разработку методик проведения испытаний. Многие организации стараются выбрать моделирование, так как оно требует минимум затрат и минимум времени на разработку. Однако, в некоторых исследованиях точный ответ может дать только процесс проведения физического испытания изделия. Без более тесного взаимодействия между электронными моделями и физическими испытаниями многие организации могут стать чрезмерно зависимыми от компьютерных моделей для разработки, которые при неправильном использовании могут в последующем привести к непредвиденным сбоям в работе дорогостоящего оборудования.

В автомобильной промышленности компьютерное моделирование становится неотъемлемой частью, так как конструкции современных автомобилей значительно усложнились, а системы компьютерного моделирования значительно улучшились. Однако, к сожалению, многие производители сводят физические испытания продукции к минимуму, полагаясь на результаты компьютерного моделирования.

Процессы физических испытаний не поспевают за компьютерным моделированием в совершенствовании методик. Инженеры, проводящие испытания, обычно стараются проводить минимально необходимые тесты над изделием. Как результат – более частые повторы испытаний для получения более достоверных результатов или их подтверждение. Ставка чисто на компьютерное моделирование без проведения физического испытания может привести к очень серьезным последствием в будущем, так как математическая модель изделия, на основании которой производится процесс вычисления динамических свойств, создается с определенными допущениями, и в реальной работе изделие может вести себя немного по-другому, чем отображалось на мониторе.

Компьютерное моделирование имеет симбиотическое отношение с физическими испытаниями оборудования, которые позволяют (в отличии от компьютерной модели) получить экспериментальные данные. Поэтому, отставания в технологиях тестирования готовых устройств, при таком росте возможностей вычислительной техники, может привести к излишней экономии на экспериментальных образцах с последующими проблемами в готовых изделиях. Точность моделей напрямую зависит от входных данных о поведении модели (математическое описание) в различных условиях.

Конечно, элементы моделей не могут включать в себя все возможные варианты и условия поведения определенных компонентов, так как сложность расчетов и громоздкость математической модели стали бы просто огромными. Для упрощения математической модели принимают определенные допущения, которые «не должны» оказывать существенное влияние на работу механизма. Но, к сожалению, реальность всегда гораздо более сурова. Например, математическая модель не сможет просчитать, как поведет себя устройство в случае наличия в материале микротрещин, или при резком изменении погоды, которое может привести к совершенно иному распределению нагрузки в конструкции. Экспериментальные данные и посчитанные данные довольно часто отличаются друг от друга. И это необходимо помнить.

Есть еще один важный плюс в сторону физического испытания оборудования. Это способность указать инженерам недочёты при составлении математических моделей, а также предоставляет неплохую возможность для открытия новых явлений и совершенствования старых методик расчетов. Ведь согласитесь, что если вбить в математическую формулу переменные, то результат будет зависеть от переменных, а не от формулы. Формула будет оставаться всегда постоянной, и только реальное физическое испытание способно ее дополнить или изменить.

Появление новых материалов во всех отраслях современной промышленности создает дополнительные проблемы для компьютерного моделирования. Если бы инженеры продолжали использовать уже проверенные временем материалы и совершенствованные их математические описания то тогда да, проблемы с моделированием были бы значительно меньше. А вот появление новых материалов требует в обязательном порядке проводить физические испытания готовых изделий с этими материалами. Тем не менее, новые элементы все чаще появляются на рынке и тенденции роста только идут вверх.

Например, в аэромобильной и автомобильной промышленности были быстро приняты композитные материалы из-за их хорошей удельной прочности. Одним из основных проблем компьютерного моделирования является не способность модели точно прогнозировать поведение материала, который испытывает определенный недостаток характеристик, по сравнению с материалами из алюминия, стали, пластмассы и прочих, которые уже давно используются в этой отрасли.

Проверка верности компьютерных моделей для композитных материалов имеет решающее значение на этапе проектирования. После проведения расчетов необходимо собрать стенд для испытаний на реальной детали. При проведении физических тестов для измерения деформации и распределению нагрузки, инженеры сосредотачивают свое внимание на критических точках, определенных с помощью компьютерной модели. Для сбора информации о критических точках применяют тензодатчики. Этот процесс поддается мониторингу только для ожидаемых проблем, которые могут создать «белые пятна» в процессе тестирования. Без всеобъемлющих исследований подлинность модели может подтвердиться, хотя на самом деле это будет не так.


Также существует проблема и в постепенно устаревающих технологиях измерения, например, тензодатчики и термопары не позволяют охватить весь необходимый диапазон измерений. По большей части традиционные датчики способны измерить необходимую величину только на отдельных участках, не позволяя глубоко проникнуть в суть происходящего. В результате ученые вынуждены полагаться на предварительно смоделированные процессы, которые показывают уязвимые места и заставляют тестировщиков обратить повышенное внимание на тот или иной узел испытуемой системы. Но как всегда есть одно но. Этот подход неплохо применяется к уже проверенным временем и хорошо изученным материалам, но для конструкций, включающих в себя новые материалы, это может навредить. Поэтому инженеры-конструкторы во всех отраслях промышленности пытаются максимально обновить старые способы измерений, а также внедрить новые, которые позволят проводить более детальные измерения, чем старые датчики и методики.

Тензометрические технологии практически не менялись после их изобретения десятилетия назад. Новые технологии, такие как , способны измерять полную напряженность поля и температуру. В отличии от устаревших тензометрических технологий, которые могут собирать информацию только в критических точках, волоконно-оптические датчики могут собирать непрерывные данные о деформации и температуре. Эти технологии гораздо более выгодны при проведении физических испытаний, так как позволяют инженерам наблюдать за поведением исследуемой структуры в критических точках и между ними.

Например, волоконно-оптические датчики могут быть встроены внутрь композитных материалов во время простоя для того, чтобы лучше понять процессы вулканизации. Общим недостатком, например, может являться процесс сморщивания в одном из слоев материала, который вызывает внутри механическое напряжение. Данные процессы еще очень плохо изучены и существует очень мало информации о напряженности и деформации внутри композитных материалов, что делает практически невозможным применения к ним компьютерного моделирования.

Устаревшие технологии тензорезисторов вполне способны обнаружить остаточные деформации в композитных материалах, но только в том случае, когда поле деформации достигает поверхности и датчик установлен строго в нужном месте. С другой стороны пространственно-непрерывные технологии измерения, такие как волоконно-оптические, могут измерять все данные о напряженности поля в критических точках и между ними. Также ранее упоминалось, что волоконно-оптические датчики могут встраиваться в композитные материалы для исследования внутренних процессов.

Процесс разработки считается завершенным, когда продукт прошел все испытания и начал отгружаться потребителям. Однако, современный уровень позволяет производителям получить первые отчеты об их продукции сразу же после начала ее эксплуатации пользователями. Как правило, сразу после выхода серийного продукта начинается работа над его модернизацией.

Компьютерные модели и физические испытания идут нога в ногу. Они просто не могут существовать друг без друга. Дальнейшее развитие технологий требует максимального взаимодействия между этими средствами проектирования. Инвестиции в продвижение данных физических исследований требуют первоначально больших вложений, однако «отдача» также обрадует. Но, к сожаление, большинство разработчиков стараются получить выгоду здесь и сейчас и совершенно не заботятся о долгосрочных перспективах, выгод от которых, как правило, значительно больше.

Те, кто стремится обеспечить долгосрочные перспективы для своей продукции, будут стремиться к внедрению более инновационных и надежных методик и элементов тестирования изделий, таких как оптоволоконные измерения. Объединение технологий компьютерного моделирования и физических испытаний в будущем будет только крепнуть, ведь они дополняют друг друга.

Компьютерное моделирование достаточно широко применяется в различных отраслях науки и техники, постепенно вытесняя реальные эксперименты и опыты. Оно настолько прочно вошло в нашу жизнь, что уже достаточно сложно представить себе ситуацию, когда придется от этого способа изучения реального мира отказаться. Это явление объясняется достаточно легко: с помощью данного процесса можно достичь значительных результатов в самые кротчайшие сроки, позволяя проникнуть в ту область реальности, которая для человека не достижима.

Компьютерное позволяет на компьютере создать модель, которая с некоторым допущением обладает свойствами реального объекта или процесса, и исследование проводится именно на этой созданной модели. Для проведения изысканий необходимо точно представлять для чего они выполняются, какова их цель, какие именно свойства, стороны изучаемого объекта вас интересуют. Только в таком случае можно быть уверенными в положительном результате.

Как и любой другой процесс, компьютерное моделирование строится по определенным принципам, среди которых можно выделить следующие:

· принцип информационной достаточности. Если сведений о реальном процессе или объекте будет недостаточно, провести исследования с помощью данного метода скорее всего не получится;

· принцип осуществимости. Созданная модель должна позволять достичь поставленных перед исследователем целей;

· принцип множественности моделей, который опирается на то, что для исследования всех свойств реального объекта необходимо разработать несколько моделей, так как объединить все реальные свойства в одной не представляется возможным;

· принцип агрегированности. В этом случае сложный объект представляется в виде отдельных блоков, которые можно определенным образом перестраивать;

· принцип паратмеризации, который позволяет параметры определенной подсистемы заменять числовыми значениями, что сокращая объем и продолжительность моделирования, снижает также адекватность полученной модели. Поэтому применение данного принципа должно быть полностью обоснованным.

Компьютерное моделирование должно выполняться в определенной, строго заданной последовательности. На первом этапе определяется цель, после чего производится разработка Затем выполняется формализация модели, позволяющая осуществить ее программную реализацию. После этого можно приступать к планированию модельных экспериментов и реализовывать ранее составленный После того, как все предыдущие пункты будут выполнены, можно будет анализировать и интерпретировать полученные результаты.

В последнее время компьютерное моделирование физических процессов выполняется с применением различных Можно встретить большое количество работ, выполненных в Matlab. Такие исследования позволяют изучить всевозможные физические процессы, которые в реальности человек наблюдать не сможет.

Компьютерное моделирование находит достаточно широкое применение в промышленности. С его помощью разрабатываются новые изделия, проектируются новые машины, задаются условия их работы и проводятся виртуальные испытания. Если составленная модель обладает достаточной степенью адекватности, можно утверждать, что результаты реальных испытаний будут аналогичны виртуальным. Помимо изучения свойств той или иной системы, на компьютере можно разработать внешний вид готового изделия, задать его параметры. Это минимизирует количество брака, который может образоваться в результате неточности инженерных расчетов.

Пособие предназначено для обучения студентов физических специальностей моделированию физических явлений на компьютере. Приведены определения различных типов моделей, дана их классификация. На примерах явлений, как распространенных в природе, так и наблюдаемых в физическом эксперименте, показывается, как составляют и анализируют модели. Рассматриваются системы, имеющие хаотический или аналитически непредсказуемый характер: прохождение потока частиц в кристаллах, случайные блуждания, перколяции, модели кинетического роста, клеточные автоматы, модель Изинга. Теоретическое изложение дополняется примерами готовых программ или программными блоками, из которых обучаемый может составить программу самостоятельно.

Материальное и идеальное моделирование.
Все существующие в настоящее время приемы моделирования можно (условно) разделить на материальные и идеальные.

Материальное моделирование - это моделирование, при котором исследование объекта выполняется с использованием его материального аналога (от греческого analogia - соответствие, соразмерность), воспроизводящего основные физические, геометрические, динамические и функциональные характеристики данного объекта. К таким моделям, например, можно отнести макеты в архитектуре, модели и экспериментальные образцы различных транспортных средств.

Идеальное моделирование отличается от материального тем. что оно основано не на материальной аналогии объекта и модели, а на аналогии идеальной, мыслимой, и всегда носит теоретический характер.

Вопрос: можно ли обойтись в технике без применения тех или иных видов моделей? Очевидный ответ - нет! Конечно, можно построить новый самолет «из головы» (без предварительных расчетов, чертежей, экспериментальных образцов, т.е. используя единственную «идеальную модель», существующую в «голове» конструктора). Однако едва ли это будет достаточно эффективная и надежная конструкция. Единственным ее достоинством можно считать ее уникальность. Ведь даже автор не сможет повторно изготовить точно такой же самолет, так как в результате изготовления первого экземпляра будет получен некоторый опыт, который обязательно изменит «идеальную» модель «в голове» самого конструктора.

ОГЛАВЛЕНИЕ
Глава 1. ОПРЕДЕЛЕНИЕ И НАЗНАЧЕНИЕ МОДЕЛИРОВАНИЯ
1.1. Что такое модель?
1.2. Материальное и идеальное моделирование
1.3. Определение модели
1.4. Свойства моделей
1.5. Цели моделирования
1.6. Классификация моделей
Глава 2. МЕТОД МОНТЕ-КАРЛО
2.1 Общее представление о методе
2.2. Случайные величины
2.3. Применение метода Монте-Карло
Глава 3. ПОТОК ЗАРЯЖЕННЫХ ЧАСТИЦ В КРИСТАЛЛЕ
3.1. Эффект каналирования
3.2. Источник ионов
3.3. Кристаллическая структура
3.4. Рассеяние
Глава 4. СЛУЧАЙНОЕ БЛУЖДАНИЕ
4.1. Одномерное случайное блуждание
4.2. Случайное блуждание в нескольких измерениях
4.3. Случайные блуждания без самопересечений
4.4. Истинное блуждание без самопересечений
Глава 5. ТЕОРИЯ ПЕРКОЛЯЦИИ
5.1. Перкаляционные процессы в природе и технологиях
5.2. Типы перколяций
5.3. Порог перколяции
5.4. Алгоритм Хошена - Копельмана
5.5. Критические показатели и масштабная инвариантность
5.6. Ренорм-группа
Глава 6. АККРЕЦИЯ САМОПОДОБНЫХ СТРУКТУР
6.1. Фрактальная размерность
6.2. Регулярные фракталы и самоподобие
6.3. Процессы роста фракталов
Глава 7. КЛЕТОЧНЫЕ АВТОМАТЫ
7.1. Особенности моделей клеточных автоматов
7.2. Игра «Жизнь»
Глава 8. МОДЕЛЬ ИЗИНГА
8.1. Микроканонический ансамбль
8.2. Фазовые взаимодействия
8.3. Канонический ансамбль
8.4. Алгоритм Метрополиса
8.5. Другие применения модели Изинга
ЛИТЕРАТУРА
ОГЛАВЛЕНИЕ.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Компьютерное моделирование физических явлений, Малютин В.М., Склярова Е.А., 2004 - fileskachat.com, быстрое и бесплатное скачивание.



Статьи по теме