Команды диагностики сети. Диагностика компьютерных сетей штатными средствами операционной системы

Муромский институт (филиал) Владимирского государственного университета

Методы решения проблем проектирования и диагностики локальных вычислительных сетей

А.Е. Лашин, Д.О. Мальцев

Научный руководитель – В.В. Чекушкиин, профессор кафедры САПР, д.т.н.


Локальная вычислительная сеть (ЛВС) это совместное подключение отдельных компьютеров или рабочих станций и через канал передачи данных. Понятие ЛВС относится к географически ограниченным реализациям, в которых определённое число компьютеров связаны друг с другом с помощью современных и технологичных средств коммуникаций.

ЛВС включает в себя: кабельную локальную сеть, активное сетевое оборудование и компьютеры различного назначения. Преимущества применения локальной вычислительной сети:

Возможность получить и отправить любую информацию с любого компьютера в сети.

Свободное добавление, удаление и перемещение рабочих мест сотрудников внутри офиса/здания.

Оперативное наращивание (модернизация) системы оборудования без затрат на кабельную сеть.

При построении ЛВС главной задачей является эффективное проектирование её структуры (Рис. 1). Благодаря правильно выбранной структуре локальной сети можно существенно повысить скорость и функциональность системы и сократить дальнейшие расходы на её создание и последующий сервис.

Рис. 1 – Структура локальной вычислительной сети


Рассмотрим сеть, в которой есть доступ в интернет и к любому компьютеру, подключённому в сеть. Доступ к сети Интернет осуществляется за счёт роутера, к которому подключена выделенная линия, mac адреса отключены. Роутер – используется для объединения сетей с разными типами программного и аппаратного обеспечения. Мост – разделяет сеть на участки, таким образом данные проходят через мост только если это действительно необходимо, т.е. если получатель не находится в одном сегменте с отправителем. Коммутатор (сетевой концентратор) – отличатся от моста только тем, что он имеет по процессору на каждое гнездо, в то время как у моста - один процессорный блок на все гнезда. Такая структура повышает производительность. Коннектор – устанавливается на концах сетевого кабеля (витой пары) с помощью обжимного инструмента, служит в качестве штекера витой пары.

Сеть сформирована с помощью коммутаторов и витой пары, обжатой по стандарту T568A. Доступ в интернет осуществляется по средствам роутера. Сеть интернет (выделенная линия) подключается к входу роутера, а его выход подключается к входу разветвителя. Разветвитель в свою очередь или на прямую, или через другие разветвители подключается к компьютеру. Таким образом, осуществляется соединение всех компьютеров в единую локальную вычислительную сеть (ЛВС).

Чтобы отдельные компьютеры отображались в сетевом окружении внутри ЛВС, необходимо каждый компьютер настроить должным образом. То есть, установить драйвер сетевой карты и задать настройки сетевого подключения. В данном случае требуется отключить mac адрес, ввести IP адрес и маску подсети, а если требуется доступ в интернет, то ввести адрес шлюза (IP адрес роутера).

Если в такой сети, у одной из машин, или группы машин возникает проблема, то определить неисправность можно следующими методами диагностики:

локальный сеть роутер

1. Изначально, необходимо проверить целостность линии витой пары. Если ели обнаружен обрыв, необходимо его устранить;

2. Проверить, качество контакта коннектора витой пары, как в разъёме сетевой карты, так и в разъёме коммутатора. Извлечь коннектор из разъёма и вставить вновь до характерного щелчка;

3. Проверить правильность введенных настроек (к примеру, у 2-х машин в ЛВС не может быть одинаковый IP адрес). Ввести правильные настройки для конкретной машины;

4. Если проблема не в этом, то необходимо попробовать подсоединить сетевой провод к другому разъёму в коммутаторе (бывает, что выгорает один из разъёмов, а не весь коммутатор). Извлечь коннектор из разъёма и присоединить его к другому разъёму;

5. Проверить состояние mac адреса (при установке на машину некоторых операционных систем он может измениться). В данном случае, отключить в настройках mаc адрес;

6. Если неисправность не устранена, то нужно переустановить драйвера сетевой карты, но после придется вводить все настройки заново. Вставить диск с драйвером и запустить установку драйвера с помощью стандартной утилиты, далее ввести все настройки для конкретной машины;

7. Если всё выше перечисленное не решило проблему, то следует заменить сетевую карту (если есть такая возможность), после этого нужно будет снова установить драйвера и ввести все настройки. Если сетевая карта встроена в материнскую, то вставить в специальный разъём на материнской плате сетевую карту. Если сетевая карта уже была установлена, то поменять её на заведомо рабочую. Это крайняя мера, но не редки случаи, когда выгорает встроенная сетевая плата.

Это основные 7 проблем, которые могут возникнуть. Но бывают случаи абсолютно специфических неполадок: к примеру, очень сильная запылённость, выход из строя роутера или его блока питания, проблема с розеткой питающей сети 220 В, и т.д. Некоторые неполадки могут быть совершенно неординарны и требовать иного решения проблемы (к примеру, не правильная разводка соединительных проводов, в таком случае нужно исправить некорректно разведенный конец провода).

NDF (Network Diagnostics Framework) позволяет пользователям диагностировать и устранять неполадки, предоставляя диагностические оценки и информацию о последовательности операций, которая позволит устранить проблему. NDF упрощает и автоматизирует многие из стандартных операций по устранению неполадок и реализации решений для устранения проблем сети.

Теперь Microsoft поставляет NDF в составе Windows 7 наряду с другими новшествами, такими как доступ к утилите устранения неполадок из области уведомлений, апплет «Устранение неполадок компьютера» (Troubleshooting) в панели управления и трассировка сети средствами Event Tracing for Windows (ETW). Все они облегчают просмотр и сбор информации, необходимой для исследования неполадок сети, требующих исправления — автоматически или за счет вмешательства пользователя.

Устранение неполадок с использованием значка сети в области уведомлений

Утилиту устранения неполадок легко запустить, щелкнув правой кнопкой значок сети в области уведомлений рабочего стола Windows 7 и выбрав команду «Диагностика неполадок» (Troubleshoot problems). Откроется окно утилиты «Диагностика сетей Windows» (Windows Network Diagnostics) и запустится диагностика сети.

Поиск неполадок из Панели управления

В Windows 7 не нужно ждать, пока произойдет сбой сети, чтобы выполнить встроенную диагностику. Открыть сеанс поиска неполадок можно в любой момент, открыв служебную программу «Устранение неполадок компьютера» (Troubleshooting) на Панели управления, рис. 1. В данном случае служебная программа обнаружила, что у компьютера нет подключения к Интернету. Об этом говорит сообщение в верхней части страницы, при этом предлагается попытаться подключиться повторно.

Рис. 1 Открытие апплета устранения неполадок компьютера в панели управления.

Если щелкнуть «Сеть и Интернет» (Network and Internet), откроется диалоговое окно, показанное на рис. 2. Там можно выбрать один из семи вариантов исследования сетевых подключений, в том числе устранить неполадки подключения к Интернету, доступа к файлам и папкам на других компьютерах и печати.


Рис. 2 Поиск неполадок сети и подключения к Интернету.

При выборе любого из этих семи вариантов открывается мастер, помогающий выполнить диагностику неполадки и, если возможно, устранить ее автоматически или вручную. Средство диагностики также ведет запись в журнал трассировки событий (Event Tracing Log, ETL). Если неполадку не удается устранить, можно исследовать журнал самостоятельно или переслать его более сведущим людям. Для этого щелкните в диалогом окне поиска неполадок «Просмотр журнала» (View History). На рис.3 показан пример журнала ETL.


Рис. 3 Пример журнала ETL.

Каждая запись в журнале представляет отдельный сеанс поиска неполадок. Двойной щелчок сеанса открывает его журнал (рис. рис.4.


Рис. 4 Пример журнала устранения неполадок.

Чтобы просмотреть детали процедуры поиска неполадок обнаружения, щелкните ссылку «Обнаружение проблемы» (Detection details) - откроется окно, похожее на показанное на рис. 5.


Рис. 5 Типичное окно с подробностями поиска неполадок.

В верхней части диалогового окна отображается имя ETL-файла, в котором хранится информация о сеансе поиска неполадок. Если надо оправить копию в отдел поддержки или в Microsoft для анализа, вы можете сохранить файл, щелкнув его имя, после чего откроется окно загрузки файла.

Просматривать и анализировать ETL-файлы можно средствами Сетевого монитора версии 3.3. Также для этой цели можно задействовать средство «Просмотр событий» и Tracerpt.exe. Можно преобразовать файл в XML или текстовый формат командой netsh trace convert. Подробные результаты сеанса поиска неполадок можно получить в виде CAB-файла, для чего нужно щелкнуть правой кнопкой сеанс в окне «Журнал устранения неполадок» (Troubleshooting History) и выбрать Сохранить как (Save As). Как и ETL-файлы, CAB-файл можно отправить в отдел поддержки для анализа.

Трассировка сети средствами Netsh.exe

Windows 7 включает новый контекст утилиты Netsh.exe - netsh trace, служащий для трассировки сети. Команды в этом контексте позволяют выборочно включать трассировку провайдеров или сценариев. Провайдер - это отдельный компонент в стеке сетевых протокол, такой как Winsock, TCP/IP, службы беспроводной локальной сети или NDIS. Сценарий трассировки - это набор провайдеров, реализующих одну функциональность, например совместный доступ к файлам или беспроводную локальную сеть. Чтобы избавиться от несущественных подробностей и уменьшить размер ETL-файла, можно применять фильтры.

Как правило, для выполнения детального анализа неполадок сети нужно предоставлять сотрудникам отдела поддержки или службе поддержки клиентов Microsoft как информацию о трассировки компонента, так и запись сетевого трафика во время проявления неполадки. До Windows 7 для получения этих данных приходилось выполнять две различных процедуры: использовать команды Netsh.exe для включения и отключения трассировке и задействовать сетевой анализатор, такой как Сетевой монитор, для записи сетевого трафика. После этого предстояло решить нелегкую задачу синхронизации информации из этих двух источников, чтобы определить, как сетевой трафик соотносится с событиями в журналах трассировки.

В Windows 7 при выполнении трассировки сети в контексте netsh trace ETL-файлы могут последовательно содержать информацию и сетевого трафика, и трассировки компонента. Полученные ETL-файлы можно изучать средствами Сетевого монитора версии 3.3, который предоставляет намного более эффективный интерфейс анализа и исследования сетевых неполадок (рис. На рис. 6 показан пример файла ETL, который просматривается в Network Monitor 3.3.


Рис. 6 Использование сетевого монитора версии 3.3 для просмотра сетевого трафика, сохраненного в ETL-файле.

Эта новая возможность позволяет не требовать от конечных пользователей или сотрудников отдела поддержки для записи сетевого трафика устанавливать и использовать Сетевой монитор на компьютере, где наблюдаются неполадки. Имейте в виду, что по умолчанию ETL-файлы, созданные в сеансах диагностики неполадок апплета «Устранение неполадок компьютера» (Troubleshooting) не содержат данных сетевого трафика.

Для последовательной регистрации данных трассировки и сетевого трафика многих компонентов сетевого стека (таких как Winsock, DNS, TCP, NDIS, WFP и т. п.) в Windows используется корреляция на основе идентификатора транзакции, которая называется группировкой и используется для сбора и записи трассировки и трафика в ETL-файле. Группировка в ETL-файлах позволяет исследовать всю транзакцию как единую последовательность взаимосвязанных событий.

Подробнее о командах Netsh.exe для трассировки см. врезку «Запуск и остановка трассировки в Netsh.exe».

При использовании Netsh.exe в Windows 7 могут создаваться два файла. ETL-файл содержит события трассировки компонентов Windows и, если требуется, сетевого трафика. По умолчанию ETL-файл называется Nettrace.etl и размещается в папке %TEMP%\\NetTraces. Можно задать другое имя и место, задав параметр tracefile=. Необязательный CAB-файл может содержать файлы нескольких типов, в том числе текстовые файлы, файлы реестра Windows, XML и другие - они содержат дополнительную информацию для поиска неполадок. CAB-файл также включает копию ETL-файла. По умолчанию CAB-файл называется Nettrace.cab и размещается в папке %TEMP%\NetTraces.

Трассировку средствами Netsh.exe можно совмещать с диагностированием с помощью апплета «Устранение неполадок компьютера» панели управления. Сначала выполните соответствующую команду Netsh.exe, чтобы запустить трассировку сценария, например: netsh trace scenario=internetclient report=yes. В апплете «Устранение неполадок компьютера» запустите сеанс устранения неполадок подключения к Интернету. По завершении сеанса выполните команду netsh trace stop. Теперь при просмотре журнала сеанса устранения неполадок будет доступен CAB-файл.
Боковая панель: Запуск и остановка трассировки в Netsh.exe

Чтобы запустить трассировку сети в Netsh.exe, прежде всего надо открыть окно командной строки с дополнительными правами. Чтобы получить список провайдеров трассировки, выполните команду netsh trace show providers. Получить список сценариев, можно командой netsh trace show scenarios. Чтобы получить список провайдеров в сценарии, выполните netsh trace show scenario ScenarioName.

Можно запустить трассировку одного или нескольких провайдеров или сценариев. Например, трассировка сценария InternetClient запускается командой netsh trace start scenario=internetclient. Чтобы запустить трассировку нескольких сценариев, надо последовательно их задать:netsh trace start scenario=FileSharing scenario=DirectAccess.

Чтобы создать CAB-файл с форматированным отчетом, добавьте параметр report=yes. Для задания имени и местоположения ETL- и CAB-файлов служит параметр tracefile=parameter. Если в ETL файле нужно записать еще и сетевой трафик, добавьте параметр capture=yes.

Вот пример команды, которая запустит трассировку сценария WLAN, создаст CAB-файл с форматированным отчетом, запишет сетевой трафик и сохранит файлы под именем WLANTest в папке C:\\Tshoot: netsh trace start scenario=WLAN capture=yes report=yes tracefile=c:\tshoot\WLANtest.etl.

Чтобы остановить трассировку, используйте команду netsh trace stop command.

Боковая панель: Использование сетевого монитора версии 3.3 для просмотра ETL-файлов

Чтобы Сетевой монитор версии 3.3 смог полностью отображать ETL-файлы, сгенерированные в Windows 7, нужно сконфигурировать полные анализаторы Windows. По умолчанию Сетевой монитор версии 3.3 использует стандартные анализаторы Windows. Чтобы конфигурировать полные анализаторы Windows, выберите Tools/Options/Parsers. В списке анализаторов выберите Windows/Stubs, чтобы отключить стандартные анализаторы и включить полные анализаторы, далее щелкните OK.

Джозеф Дейвис (Joseph Davies) - ведущий технический писатель в группе команды технических писателей по теме сетей Windows в Microsoft. Он является автором и соавтором нескольких книг, опубликованных в издательстве Microsoft Press, в числе которых «Windows Server 2008 Networking and Network Access Protection (NAP)», «Understanding IPv6, Second Edition» и «Windows Server 2008 TCP/IP Protocols and Services».

Данная статья специально для тех, кто понимает, что такое IP-адрес, DNS и основной шлюз сети, а также знаком с терминами провайдер, сетевая карта и т.д. Обзор этих терминов, возможно, будет опубликован отдельно.

Поскольку статья написана для большой аудитории от простого пользователя Windows до начинающего администратора UNIX или пользователя MacOS, я решил выделить 2 части. В первой части статьи я расскажу о методах обнаружения и устранения сетевых ошибок средствами операционной системы Windows, во второй части – средствами UNIX-подобных ОС, таких, как Linux, FreeBSD, MacOS. И так, у Вас не работает Интернет, в отличии от Ваших коллег, соседей, жены, которые работают через один и тот же роутер/сервер и т.д. Что делать?

Диагностика и устранение ошибок сети штатными средствами ОС Windows

Для начала нам потребуется рабочий инструмент. Повторюсь, никаких сторонних программ устанавливать мы не будем, используем только то, что есть в составе ОС. Итак, запускаем Командную строку. Для тех, кто не знает, это черное окошко с белыми буковками. Находится она в меню Пуск->Все программы->Стандартные-> Командная строка. Быстро вызвать ее также можно через поиск в Windows7/Windows8 по фразе cmd или Пуск->Выполнить->cmd в WindowsXP.

Мигающий курсор говорит нам о том, что программа готова к вводу команд. Все эти команды мы будем вбивать не обращая внимания на то, что написано до этого курсора.

Шаг 1: проверяем состояние оборудования, наличия подключения(кабеля)

За все это отвечает команда ipconfig. Набираем ipconfig /all и нажимаем Enter. Таким же образом мы будем набирать и остальные команды. Обращаю внимание, что сама команда ipconfig запускается с параметром all, который обязательно отделяется пробелом и знаком косой черты /. Отреагировав на команду ipconfig, система нам вывела несколько экранов информации, в которые нам предстоит вникнуть, чтобы правильно диагностировать и устранить проблему сети.

Как видно на скриншоте, для каждого сетевого адаптера система вернула настройки. Если у Вас выведена только фраза Настройка протокола IP для Windows , значит в системе вообще не обнаружены сетевые адаптеры: здесь возможны варианты выхода из строя оборудования, отсутствия драйверов или аппаратное выключение, например кнопка на ноутбуке, которая выключает беспроводные сети.

Поскольку у меня ноутбук, были обнаружено несколько доступных сетевых адаптеров. Особо я выделю

Если у Вас, как, например, в моем случае, применимо к выделенной проводной сети в строке Состояние среды значится фраза Среда передачи недоступна значит налицо неподключенный или испорченный кабель/розетка/порт коммутатора и т.п. В случае наличия физического подключения, как например у меня в Wi-Fi сети, будут выведены основные настройки (мы рассмотрим только некоторые из них):

  • Описание : здесь, как правило, указывается сетевой адаптер, определенный системой (виртуальные адаптеры, типа Microsoft Virtual и т.п. не имеет смысла рассматривать вообще, нам нужны только физические);
  • DHCP включен : важный параметр, который указывает, как был получен адрес: автоматически через DHCP(будет значение Да ) или установлен вручную(будет значение Нет );
  • IPv4-адрес : IP-адрес в TCP/IP сети – один из трех самых важных параметров, который понадобится нам в дальнейшем;
  • Маска подсети : Еще один важный параметр;
  • Основной шлюз : 3-й важный параметр – адрес маршрутизатора/шлюза провайдера, как правило совпадает с DHCP-сервером, если настройки получены автоматически;
  • DNS-серверы : адреса серверов, которые преобразуют имена хостов в IP-адреса.

Шаг2: проверяем правильность IP-адреса

В случае, если у Вас настройки получаются автоматически (опция DHCP включен - Да), но не заполнен параметр Основной шлюз и DNS-серверы , служба DHCP не работает на роутере или сервере. В этом случае нужно убедиться, что роутер включен (возможно попробовать его перезагрузить), в случае сервера, что служба DHCP работает и назначает адреса.

После перезагрузки роутера, необходимо, обновить настройки. Для этого можно перезагрузить компьютер или просто выполнить 2 команды:

  • ipconfig /release – для сброса всех автоматических настроек
  • ipconfig /renew – чтобы получить автоматические настройки

В результате обеих команд мы получим вывод, аналогичный выводу команде ipconfig /all. Наша задача добиться того, чтобы были заполнены IPv4-адрес, Маска подсети, Основной шлюз, DNS-серверы. Если настройки назначаются вручную – проверяем, чтобы были заполнены IPv4-адрес, Маска подсети, Основной шлюз, DNS-серверы. В случае домашнего интернета эти настройки могут быть указаны в договоре с провайдером.

Шаг 3: проверяем доступность своего оборудования и оборудования провайдера

После того, как все настройки получены, необходимо проверить работоспособность оборудования. К слову сказать, вся сеть представляет собой цепочку шлюзов. Первый из них и есть тот Основной шлюз , который выдала нам команда ipconfig, следующий – шлюз, являющийся основным для провайдера и так далее до достижения нужного узла в сети Интернет.

И так, для проверки сетевых устройств в Windows служит команда ping и для того, чтобы правильно диагностировать проблему в работе сети необходимо выполнить пинг для следующих адресов в последовательности:

  1. Свой компьютер (IPv4-адрес). Наличие отклика свидетельствует о работоспособности сетевой карты;
  2. Роутер или сервер, выполняющий роль Интернет-шлюза (Основной шлюз). Наличие отклика свидетельствует о правильной настройки компьютера для работы в локальной сети и доступности шлюза, отсутствие отклика свидетельствует либо о неверных настройках, либо о неработающем роутере/сервере.
  3. Ваш IP у провайдера (обычно указан в договоре с провайдером – настройки, IP-адрес). Наличие отклика свидетельствует о правильной настройки Вашего компьютера, роутера/сервера, отсутствие отклика – либо о неверной настройки роутера, либо о недоступном шлюзе провайдера/ неполадках на стороне провайдера.
  4. DNS (DNS-серверы). Наличие отклика свидетельствует о корректной работе сетевого протокола – если в этом случае не работает Интернет, скорее всего дело в самой операционной системе, вирусном заражении, программных блокировках, как со стороны провайдера, так и самого компьютера/шлюза.
  5. IP-адрес любого рабочего хоста в сети, например я использую DNS-сервер Google – 8.8.8.8. Отклик свидетельствует о правильной работе сетевого оборудования как с Вашей стороны, так и со стороны провайдера. Отсутствие отклика свидетельствует об ошибках, которые дополнительно диагностируются трассировкой.
  6. URL любого сайта, например yandex.ru. Отсутствие отклика может свидетельствовать о неработающей службе распознавания адресов, если не удалось преобразовать url в IP-адрес. Это проблема скорее всего службы DNS-клиент, которая отключена в Windows на Вашем ПК, либо работает не правильно.

Для рассматриваемого примера будут выполнены следующие команды.

При положительном тесте будет выведено количество отправленных и полученных пакетов, а также время прохождения пакета до узла сети.

Характерные ошибки выглядят подобным образом.

Шаг 4: Тестирование трассировкой

Также общую картину можно получить, если воспользоваться трассировкой. Суть теста в том, что пакет проходит по всем шлюзам от тестируемого компьютера до узла сети. В качестве узла сети может быть шлюз провайдера, какой-либо сервер или просто url сайта.

Для запуска необходимо применить команду tracert. В примере, я буду тестировать сайт yandex.ru:

На первом шаге хост преобразуется в IP-адрес, что свидетельствует о правильной работе DNS-служб и верной настройке сети. Далее по порядку пакет проходит по всем шлюзам сети до назначения:

  • 1-Основной шлюз
  • 2,3-Шлюзы провайдера (может быть 1 или несколько)
  • 4,6-Промежуточный шлюзы
  • 5-Один из шлюзов не доступен
  • 7-Нужный нам сайт yandex.ru

Диагностика неисправности сети в этом тесте помогает определить на каком именно узле имеется неисправность. Так, например, если пакет не уходит дальше 1-й строки (Основной шлюз), значит существует проблема с роутером или ограничения на стороне провайдера. 2-я строка – проблема на стороне провайдера и т.д.

Шаг 5: Тестирование отдельных протоколов

При успешном прохождении всех вышеперечисленных тестов можно утверждать о правильной настройке сети и работе провайдера. Однако и в этом случае могут некорректно работать некоторые клиентские программы, например электронная почта или браузер.

Связано это может быть как с проблемами на самом компьютере (например, вирусное заражение или неправильные настройки программы или вовсе ее неработоспособность), так и с ограничительными мерами, применяемыми провайдером (блокирование 25-го порта для отправки почты).

Для диагностики этих проблем применяется программа telnet. По умолчанию в ОС Windows 7 и выше, данный компонент не установлен. Для установки необходимо перейти в Пуск-Панель-Управления->Программы(Программы и компоненты, Установка и удаление программ в зависимости от версии ОС), перейти в Включение и отключение компонентов Windows (для этого требуются права администратора) и установив галочку напротив Клиент Telnet нажать OK.

Теперь мы можем приступать к тестированию сетевых портов. Для примера, проверим работоспособность почтового протокола.

У меня есть корпоративный почтовый ящик, который располагается на хостинге RU-CENTER. Адрес сервера: mail.nic.ru, сообщения перестали поступать по протоколу POP3, стало быть порт 110 (адрес сервера и номер порта я взял из настроек Outlook). Таким образом для того, чтобы проверить, имеет ли мой компьютер доступ к серверу mail.nic.ru по порту 110 в командной строке я запишу:

telnet mail.nic.ru 110

Далее сервер выдал мне статус моего обращения +ОК , что свидетельствует о корректной работе как сети в целом, так и почтовой службы в частности и в неработающей почте скорее всего виноват почтовый клиент.

Убедившись в этом, я набираю команду quit, на что сервер снова ответил мне +ОК и тем самым завершил сеанс работы команды telnet.

Таким образом, с помощью штатных средств операционной системы Windows мы можем диагностировать и устранить проблему сети. В следующей части статьи, я расскажу о штатных средствах диагностики в UNIX-подобных ОС, таких, как Linux, FreeBSD и MacOS.

Рис. 2.

В составе Windows XP2000 есть команда "Ping" она позволяет оправлять пакеты информации заданной длины и фиксировать время отклика удаленной системы, а так же целостность информации. Тестовая служба Ping взаимодействует напрямую с сетевой картой на уровне протокола TCP/IP, поэтому вне зависимости от того, настроены ли параметры доступа и дополнительные службы, Ping систему увидит.

Запустим командную строку "Пуск" -> "Выполнить -> "cmd".

Появиться окно консольного сеанса, по сути, старый добрый MS DOS. Затем с помощью команд CD (Change Directory) перейдите в папку system32 вашей копии Windows XP как показано на рисунке 8. Если запустить ping из Windows с помощью batcmd файла или раздела "выполнить", сразу после выполнения задачи окно программы закроется и мы не успеем увидеть результаты.

Формат команды: Ping "IP адрес удаленной системы"

Например "Ping 192.168.0.1". По умолчанию программа передает 4 пакета по 32 байт каждый, что недостаточно для объективного тестирования сети, так как система бодро отчитается об успешном результате даже при очень низком качестве сигнала. Данная команда подойдет только для того, чтобы определить, есть ли вообще связь с тем или иным узлом. Для тестирования качества связи запустите Ping со следующими параметрами.

ping.exe -l 16384 -w 5000 -n 100 192.168.0.XX.

Это обеспечит отправку 100 запросов по 16 килобайт на заданный IP адрес с интервалом ожидания в 0,5 секунды.

  • 1. Если по результатам тестирования дошли все пакеты и потери составили не более 3%, сеть работает нормально.
  • 2. От 3-10% - сеть по-прежнему работает, благодаря алгоритмам коррекции ошибок, однако из-за значительного числа потерянных пакетов и необходимости их повторной доставки снижается эффективная скорость сети.
  • 3. Если число потерянных пакетов превышает 10-15%, необходимо принять меры по устранению неисправности, вызвавшей ухудшения качества связи.

Для получения более объективных результатов можно увеличить размер пакетов иили их число, однако это увеличит и время тестирования. Дополнительные настройки программы ping можно узнать, если запустить её с привычным справочным ключом ping /?

Причины слабого сигнала в линии и потери пакетов данных

  • - Физические повреждения сетевого кабеля или его изоляции.
  • - Некачественный обжим.
  • - Ошибки в разводке витой пары.
  • - Превышение стандартной длины сегмента.
  • - Наличие мощных источников помех по ходу кабеля.
  • - Некачественное восстановление поврежденных участков.
  • - Более 5 коммутаторов в цепи.

Если произошел обрыв кабеля наращиваем витую пару.

Как определить, что произошел обрыв кабеля? Очень легко: сеть не будет работать, световые индикаторы сетевой карты и коммутатора погаснут (при некоторых повреждениях кабеля этого не происходит). Windows XP выдаст сообщение: "сетевой кабель не подключен". Команда Ping не получит отклика от удаленной системы. Но не спешите паниковать, может быть, кабель действительно не подключён или по каким-то причинам выключеннеисправен switch.

Если связь пропала именно из-за повреждения сетевого кабеля, то нужно его восстанавливать. Вообще, по стандартам восстановлению витая пара не подлежит. Действительно, даже самая качественная пайка или плотная скрутка изменяет волновые свойства кабеля и работать так же хорошо, как целый, он уже не будет. Весь вопрос в том, насколько сильно падает качество связи. Как показала практика - незначительно, т.е. визуально вообще ничего не меняется, а скорость связи может падать от 5 до 10%. Правда аппаратные кабель тестеры показывают вместо витой пары пятой категории третью. Конечно, по возможности кабель должны быть цельным. Но те или иные повреждения, особенно длинных отрезков сети, происходят достаточно часто и если после каждого обрыва линии прокладывать весь кабель заново, как того требуют стандарты, не хватит никаких денег и сил. Так же часто возникает ситуация, когда по тем или иным причинам не хватает длины существующего отрезка кабеля, и его нужно нарастить. Можно использовать пайку либо простую скрутку, первое предпочтительней ввиду более надёжного контакта и меньшей потери производительности. К сожалению, повреждения кабеля чаще происходят на уличных сегментах, где не всегда есть условия для проведения работ и паяльник.

Также требуется провести тестирование на нагрузочную способность, скорость. локальный сеть топология сервер

Тест на нагрузочную способность был проведен с помощью программы J.D Edwards.

Результаты тестирования следующие:

За состоянием сервера следили постоянно, но "картинку" (скриншот) получили в тот момент, когда к серверу было подключено 18 пользователей, из которых активно работали 16. Четверо были соединены с сервером, но никаких операций на нем не выполняли. В этот момент сервер уже работал с заметным "торможением" так, что это визуально ощущалось на клиентском компьютере.

Рис.3.

На рисунке 3 видно, что дисковая активность (зеленая линия) была высокой, и размер файла подкачки (синяя линия) постоянно увеличивался. При этом загрузка процессора была относительно не высокой (красная линия).

При этом используемая память превышала 3,5 Гб.

Динамику использования памяти можно увидеть на рис.4


Рис. 4.

Если посмотреть, какие процессы занимали больше всего места в памяти (рис.5 - список отсортирован по убыванию) то можно увидеть, что это ERP система (oexplore.exe).


Рис.5.

По полученным результатам был сделан вывод, что терминальный сервер может обеспечить работу в "нормальном режиме" не более 16 активно работающих пользователей. Под "нормальным режимом" понимается режим, когда не происходит заметного замедления работы клиентов по причине "торможения" терминального сервера.

В нашем случае было отмечено, что если число активных пользователей превышает 16, то сервер заметно замедляет свою работу.

Видно, что "узким местом" в работе терминального сервера является недостаток памяти - так как память используется на 100%, (зеленая линия на рис. 6), а процессор загружен в среднем на 20% (красная линия на рис.3). И, возможно, узким местом, является работа с диском.

Средства, применяемые для диагностирования и мониторинга КС, можно разделить на несколько крупных классов:

- Системы управления сетью (Network Management Systems) - централизованные программные системы, построенные в соответствии с моделью TMN, которые собирают данные о состоянии узлов и коммуникационных устройств сети, а также данные о трафике, циркулирующем в сети. Эти системы не только осуществляют мониторинг и анализ сети, но и выполняют в автоматическом или полуавтоматическом режиме действия по управлению сетью - включение и отключение портов устройств, изменение параметров мостов адресных таблиц мостов, коммутаторов и маршрутизаторов и т.п. Примерами систем управления могут служить популярные системы HP OpenView, Sun NetManager, IBM NetView, Tivoli. В соответствии с рекомендациями ISO можно выделить следующие функции систем управления сетью:

Управление конфигурацией сети и именованием - состоит в конфигурировании компонентов сети, включая их местоположение, сетевые адреса и идентификаторы, управление параметрами сетевых операционных систем, поддержание схемы сети. Также эти функции используются для именования объектов.

Обработка ошибок - выявление, определение и устранение последствий сбоев и отказов в работе сети.

Анализ производительности - помогает на основе накопленной статистической информации оценивать время ответа системы и величину трафика, а также планировать развитие сети.

Управление безопасностью - включает в себя контроль доступа и сохранение целостности данных. В функции входит процедура аутентификации, проверки привилегий, поддержка ключей шифрования, управления полномочиями. К этой же группе можно отнести важные механизмы управления паролями, внешним доступом, соединения с другими сетями.

Учет работы сети - включает регистрацию и управление используемыми ресурсами и устройствами. Эта функция оперирует такими понятиями как время использования и плата за ресурсы.

- Средства управления системой (System Management ) - часто выполняют функции, аналогичные функциям систем управления, но по отношению к другим объектам. В первом случае объектом управления является программное и аппаратное обеспечение компьютеров сети, а во втором - коммуникационное оборудование. Ниже перечислены основные функции средств управления:

Учет используемых аппаратных и программных средств. Система автоматически собирает информацию об обследованных компьютерах и создает записи в базе данных об аппаратных и программных ресурсах. После этого администратор может быстро выяснить, чем он располагает и где это находится. Например, узнать о том, на каких компьютерах нужно обновить драйверы принтеров, какие ПК обладают достаточным количеством памяти и дискового пространства и т. п.

Распределение и установка программного обеспечения. После завершения обследования администратор может создать пакеты рассылки программного обеспечения - очень эффективный способ для уменьшения стоимости такой процедуры. Система может также позволять централизованно устанавливать и администрировать приложения, которые запускаются с файловых серверов, а также дать возможность конечным пользователям запускать такие приложения с любой рабочей станции сети.

Удаленный анализ производительности и возникающих проблем. Администратор может удаленно управлять мышью, клавиатурой и видеть экран любого ПК, работающего в сети под управлением той или иной сетевой операционной системы. База данных системы управления обычно хранит детальную информацию о конфигурации всех компьютеров в сети для того, чтобы можно было выполнять удаленный анализ возникающих проблем.

Примерами средств управления системой являются такие продукты, как System Management Server компании Microsoft или LANDeskManager фирмы Intel, а типичными представителями средств управления сетями являются системы HPOpenView, SunNetManager и IBMNetView.

- Встроенные системы диагностики и управления (Embedded systems) - Эти системы выполняются в виде программно-аппаратных модулей, устанавливаемых в коммуникационное оборудование, а также в виде программных модулей, встроенных в операционные системы. Они выполняют функции диагностики и управления только одним устройством, и в этом их основное отличие от централизованных систем управления. Примером средств этого класса может служить модуль управления концентратором Distributed 5000, реализующий функции автосегментации портов при обнаружении неисправностей, приписывания портов внутренним сегментам концентратора и некоторые другие. Как правило, встроенные модули управления "по совместительству" выполняют роль SNMP-агентов, поставляющих данные о состоянии устройства для систем управления .

- Анализаторы протоколов (Protocol analyzers) - Представляют собой программные или аппаратно-программные системы, которые ограничиваются в отличие от систем управления функциями мониторинга и анализа трафика в сетях, в том числе и беспроводных . Выделяют ряд критериев оценки анализаторы протоколов :

− Возможность декодирования сетевых протоколов и поддержки физических интерфейсов.

− Качество интерфейса программного обеспечения (буфер захвата, фильтры, переключатели, постфильтрационный поиск, диапазон статистических данных).

− Наличие многоканальности.

− Генерация трафика.

− Возможность интеграции с ПК.

− Размер и вес.

− Соотношение цены и предоставляемых услуг.

- Оборудование для диагностики и сертификации кабельных систем - Условно это оборудование можно поделить на четыре основные группы: сетевые мониторы, приборы для сертификации кабельных систем, кабельные сканеры и тестеры (мультиметры).

Сетевые мониторы (называемые также сетевыми анализаторами) представляют собой эталонные измерительные инструменты для диагностики и сертификации кабелей и кабельных систем. В качестве примера можно привести сетевые анализаторы компании HewlettPackard - HP 4195A и HP 8510C. Сетевые анализаторы содержат высокоточный частотный генератор и узкополосный приемник. Передавая сигналы различных частот в передающую пару и измеряя сигнал в приемной паре, можно измерить затухание и NEXT. Сетевые анализаторы - это прецизионные крупногабаритные и дорогие (стоимостью более $20"000) приборы, предназначенные для использования в лабораторных условиях специально обученным техническим персоналом.

Назначение устройств для сертификации кабельных систем непосредственно следует из их названия. Сертификация выполняется в соответствии с требованиями одного из международных стандартов на кабельные системы.

Кабельные сканеры используются для диагностики медных кабельных систем. Данные приборы позволяют определить длину кабеля, NEXT, затухание, импеданс, схему разводки, уровень электрических шумов и провести оценку полученных результатов. Цена на эти приборы варьируется от $1"000 до $3"000. Существует достаточно много устройств данного класса, например, сканеры компаний MicrotestInc., FlukeCorp., DatacomTechnologiesInc., ScopeCommunicationInc. В отличие от сетевых анализаторов сканеры могут быть использованы не только специально обученным техническим персоналом, но даже администраторами-новичками.

Тестеры предназначены для проверки кабелей на отсутствие физического разрыва. Это наиболее простые и дешевые приборы для диагностики кабеля. Они позволяют определить непрерывность кабеля, но не дают ответа на вопрос о том, в каком месте произошел сбой.

Многофункциональные устройства анализа и диагностики. В последние годы, в связи с повсеместным распространением локальных сетей возникла необходимость разработки недорогих портативных приборов, совмещающих функции нескольких устройств: анализаторов протоколов, кабельных сканеров и, даже, некоторых возможностей ПО сетевого управления. В качестве примера такого рода устройств можно привести Compas компании MicrotestInc. или 675 LANMeter компании FlukeCorp.

В связи с повсеместным распространением оптоволоконных сетей связи все большую значимость приобретают инструменты тестирования ВОЛС.

Визуальный дефектоскоп - VFL (Visual Fault Locator) может использоваться, чтобы проверить полярность, а также чтобы обнаружить недопустимые изгибы или обрыв кабеля. VFL - это мощный инфракрасный лазер, посылающий излучаемый им поток в один конец кабеля. При этом VFL определяет непрерывность, идентифицирует правильность подключения коннекторов.

Анализатор оптических потерь - OLTS (Optical Loss Test Set) включает в себя два компонента: источник света и измеритель мощности оптического сигнала. Использование средств диагностики этого типа позволяет проверить целостность волокна и проверить соответствие кабеля установленным стандартам. Многие устройства производят такое сравнение автоматически.

Третий тип устройств для тестирования оптического кабеля- это устройства сертификации оптических систем - CTS (Certifying Test Set) - усложненное OLTS. Данное оборудование может измерить и вычислить потерю сигнала, проверить полярность, определить длину кабеля, сравнить их со встроенной библиотекой стандартов, представить карту соединения. Также есть возможность сохранять всю полученную информацию для последующего переноса на компьютер, что поможет сделать глубокий анализ и составить отчет. CTS состоит из основного и нескольких удаленных устройств (в каждом конце кабеля, участвующего в тестировании), включающих в себя измеритель мощности оптического сигнала и дуальный источник длин волн.

Оптические рефлектометры OTDR (Optical Domain Reflectometer) - диагностические инструменты, которые используются, чтобы характеризовать потерю мощности оптического сигнала, посылая короткий импульс света с одного конца волокна и анализируя свет, отраженный от другого конца волокна. Регистрируя показания, OTDR определяет оптическую мощность, время прохода сигнала и отображает эти данные в виде графика. Данные устройства позволяют производить измерение элементов, входящих в сеть, включая длину частей волокна, однородность ослабления сигнала, местоположение коннекторов. Таким образом, можно визуально определить местонахождение рефлексивных событий (связи, обрывы волокна) и нерефлексивные события (соединения, недопустимые или напряженные изгибы), анализируя график, или при помощи таблицы событий, которая может быть сгенерирована устройствами OTDR.

Рис.1.3 - Оптический рефлектометр

Рефлектометр MTS 8000 - это новая мультимодульная тестовая платформа для оптоволоконных систем. В этом приборе одновременно инсталлирован рефлектометр, оптический тестер, измеритель оптической мощности, локатор визуальных дефектов, оптический микроскоп, оптическая гарнитура, OTDR. Конструктивное решение, разработанное специалистами Acterna, позволяет одновременно устанавливать в MTS 8000 большое количество сменных оптических модулей, благодаря чему пользователь получает возможность измерения всех необходимых характеристик в зависимости от типа работ. Процессор, установленный в MTS 8000 позволяет тестировать сеть по заранее предустановленным наборам тестов. Внутренняя память устройства составляет 8МБ. Новой интересной особенностью является возможность установки жесткого диска емкостью до 6 ГБ. Для удобства и возможности оперативной работы в MTS 8000 установлены накопители FDD, CD-RW, а также USB-порты.

- Экспертные системы - этот вид систем аккумулирует человеческие знания о выявлении причин аномальной работы сетей и возможных способах приведения сети в работоспособное состояние. Экспертные системы часто реализуются в виде отдельных подсистем различных средств мониторинга и анализа сетей: систем управления сетями, анализаторов протоколов, сетевых анализаторов. Простейшим вариантом экспертной системы является контекстно-зависимая help-система. Более сложные экспертные системы представляют собой так называемые базы знаний, обладающие элементами искусственного интеллекта. Примером является экспертная система анализа сети Expert Anаlysis из семейства продуктов Distributed Sniffer System .

В основе системы лежит уникальная база знаний, накопленная специалистами компании Network General с 1986 года и основанная на опыте работы с пользователями различных сетей и разработках групп Станфордского и Массачусетского университетов, а также компании Nippon Telephone and Telegraph (NTT).

Основное назначение системы - сокращение времени простоя и ликвидация узких мест сети с помощью автоматической идентификации аномальных явлений и автоматической генерации методов их разрешения. Система экспертного анализа предоставляет диагностическую информацию трех категорий:

Симптом - событие в сети, которому администратор сети должен уделить дополнительное внимание (например, физическая ошибка при обращении к узлу сети или единичная повторная передача файла). Необязательно означает возникновение частичной потери работоспособности, однако при высоком уровне периодичности требует внимания администратора.

Диагноз - неоднократное повторение симптома, требующее обязательного анализа со стороны администратора сети. Обычно диагноз описывает ситуации, характеризующие серьезные неисправности в сети (например, дублируемый сетевой адрес). На этапе диагноза происходит перевод события, приводящего к частичной потере работоспособности сети, на язык, понятный оператору и администратору.

Объяснение - контекстно-зависимое экспертное заключение системы анализа для каждого симптома или диагноза. Объяснение содержит описание нескольких возможных причин сложившейся ситуации, обоснование подобного заключения и рекомендации по их устранению.

Система автоматического анализа Expert Analysis основана на уникальной многозадачной технологии анализа пакетов, которая состоит из следующих шагов.

Циркулирующие в сети пакеты непрерывно захватываются и помещаются в кольцевой буфер захвата (первая задача).

Одновременно с этим несколько задач-анализаторов протоколов (по одной на каждое из семейств протоколов) сканируют буфер захвата и генерируют информацию в едином внутреннем формате.

Стандартизованная информация поступает на группу задач-экспертов. Каждая из этих программ является экспертом лишь в своей узкой области, например, в знании протокола взаимодействия клиента с сервером NetWare. Если эксперт находит событие, связанное с его областью интересов, он генерирует некоторый соответствующий объект (например, "пользователь Guest сервера IBSO") в объектно-ориентированной базе данных о сети, называемой BlackboardKnowledgeBase, и связывает его с соответствующими объектами более низкого уровня. В результате возникает некоторая сложная структура, отображающая все объекты сети, относящиеся к некоторому протоколу, и все возможные связи между ними на всех семи уровнях модели ISO/OSI.

Существует вторая группа задач-экспертов, постоянно анализирующая состояние базы данных и выдающих сообщения о ненормальном функционировании сети (симптомы или диагнозы). В общей сложности система ExpertAnalysis оперирует с более чем 200 различными событиями, приводящими к частичной потере работоспособности сети.

Подобная многозадачная система анализа является уникальной на рынке анализаторов, соответствует требованиям, предъявляемым к экспертным системам диагностики, ремонта и мониторинга, гарантирует достоверность поставленного диагноза. Однако рассмотренная ЭС относится к разряду дорогих систем высшего класса и, следовательно, недоступна широкому кругу пользователей.

Еще одним примером ЭС с элементами искусственного интеллекта является программа OptiView Protocol Expert , разработанная компанией Fluke Networks и являющаяся представителем семейства распределенных систем анализа и мониторинга вычислительных сетей 10/100/1000 Ethernet. Назначение системы, как и Expert Anаlysis, направлено на сокращение времени простоя и ликвидацию узких мест сети.

Все обнаруженные события рассматриваемая система классифицирует по уровням сетевой модели OSI:

Уровень приложений: Excessive ARP, Excessive BOOTP, NFS retransmission, all ICMP errors, HTTP Get Response, Slow Server Connect, Slow Server Response;

Транспортный уровень: TCP/IP checksum error, TCP/IP retransmission, TCP/IP fast retransmission, TCP/IP zero window, TCP/IP frozen window, TCP/IP long ack, TCP/IP SYN attack;

Сетевой уровень: duplicate IP or IPX address, IP TTL expiring, IP illegal source address, ISL Illegal VLAN ID, unstable MST, HSRP coup/resign;

Канальный уровень: illegal MAC source address, broadcast/multicast storms, physical errors.

Рассматриваемая система распознает широкий ряд проблем, которые могут указать на наличие скрытого дефекта или узкого места в компоненте сети, выдает сообщения об их появлении, однако не предоставляет рекомендации по ее исправлению. Таким образом, для гарантии корректности поставленного диагноза необходимым условием является высокий уровень знаний в сетевой области у пользователя данной системы. Также, высокая стоимость системы не способствует ее повсеместному внедрению в большинство вычислительных сетей.



Статьи по теме