Кем и когда была создана интегральная схема. Принципы построения больших интегральных схем

Содержание статьи

ИНТЕГРАЛЬНАЯ СХЕМА (ИС), микроэлектронная схема, сформированная на крошечной пластинке (кристаллике, или «чипе») полупроводникового материала, обычно кремния, которая используется для управления электрическим током и его усиления. Типичная ИС состоит из множества соединенных между собой микроэлектронных компонентов, таких, как транзисторы, резисторы, конденсаторы и диоды, изготовленные в поверхностном слое кристалла. Размеры кремниевых кристаллов лежат в пределах от примерно 1,3ґ1,3 мм до 13ґ13 мм. Прогресс в области интегральных схем привел к разработке технологий больших и сверхбольших интегральных схем (БИС и СБИС). Эти технологии позволяют получать ИС, каждая из которых содержит многие тысячи схем: в одном чипе может насчитываться более 1 млн. компонентов.

Интегральные схемы обладают целым рядом преимуществ перед своими предшественниками – схемами, которые собирались из отдельных компонентов, монтируемых на шасси. ИС имеют меньшие размеры, более высокие быстродействие и надежность; они, кроме того, дешевле и в меньшей степени подвержены отказам, вызываемым воздействиями вибраций, влаги и старения.

Миниатюризация электронных схем оказалась возможной благодаря особым свойствам полупроводников. Полупроводник – это материал, обладающий гораздо большей электропроводностью (проводимостью), чем такой диэлектрик, как стекло, но существенно меньшей, чем проводники, например, медь. В кристаллической решетке такого полупроводникового материала, как кремний, при комнатной температуре имеется слишком мало свободных электронов, чтобы обеспечить значительную проводимость. Поэтому чистые полупроводники обладают низкой проводимостью. Однако введение в кремний соответствующей примеси увеличивает его электрическую проводимость.

Легирующие примеси вводят в кремний двумя методами. Для сильного легирования или в тех случаях, когда точное регулирование количества вводимой примеси необязательно, обычно пользуются методом диффузии. Диффузию фосфора или бора выполняют, как правило, в атмосфере легирующей примеси при температурах между 1000 и 1150° С в течение от получаса до нескольких часов. При ионной имплантации кремний бомбардируют высокоскоростными ионами легирующей примеси. Количество имплантируемой примеси можно регулировать с точностью до нескольких процентов; точность в ряде случаев важна, поскольку коэффициент усиления транзистора зависит от числа примесных атомов, имплантированных на 1 см 2 базы (см. ниже ).

Производство.

Изготовление интегральной схемы может занимать до двух месяцев, поскольку некоторые области полупроводника нужно легировать с высокой точностью. В ходе процесса, называемого выращиванием, или вытягиванием, кристалла, сначала получают цилиндрическую заготовку кремния высокой чистоты. Из этого цилиндра нарезают пластины толщиной, например, 0,5 мм. Пластину в конечном счете режут на сотни маленьких кусочков, называемых чипами, каждый из которых в результате проведения описываемого ниже технологического процесса превращается в интегральную схему.

Процесс обработки чипов начинается с изготовления масок каждого слоя ИС. Выполняется крупномасштабный трафарет, имеющий форму квадрата площадью ок. 0,1 м 2 . На комплекте таких масок содержатся все составляющие части ИС: уровни диффузии, уровни межсоединений и т.п. Вся полученная структура фотографически уменьшается до размера кристаллика и воспроизводится послойно на стеклянной пластине. На поверхности кремниевой пластины выращивается тонкий слой двуокиси кремния. Каждая пластина покрывается светочувствительным материалом (фоторезистом) и экспонируется светом, пропускаемым через маски. Неэкспонированные участки светочувствительного покрытия удаляют растворителем, а с помощью другого химического реагента, растворяющего двуокись кремния, последний вытравливается с тех участков, где он теперь не защищен светочувствительным покрытием. Варианты этого базового технологического процесса используются в изготовлении двух основных типов транзисторных структур: биполярных и полевых (МОП).

Биполярный транзистор.

Такой транзистор имеет структуру типа n-p-n или, намного реже, типа p-n-p . Обычно технологический процесс начинается с пластины (подложки) сильно легированного материала p -типа. На поверхности этой пластины эпитаксиально выращивается тонкий слой слабо легированного кремния n -типа; таким образом, выращенный слой имеет ту же самую кристаллическую структуру, что и подложка. Этот слой должен содержать активную часть транзистора – в нем будут сформированы индивидуальные коллекторы. Пластина сначала помещается в печь с парами бора. Диффузия бора в кремниевую пластину происходит только там, где ее поверхность подверглась обработке травлением. В результате формируются области и окна из материала n -типа. Второй высокотемпературный процесс, в котором используются пары фосфора и другая маска, служит для формирования контакта с коллекторным слоем. Проведением последовательных диффузий бора и фосфора формируются соответственно база и эмиттер. Толщина базы обычно составляет несколько микрон. Эти крошечные островки проводимостей n - и p -типа соединяются в общую схему посредством межсоединений, выполненных из алюминия, осаждаемого из паровой фазы или наносимого напылением в вакууме. Иногда для этих целей используются такие благородные металлы, как платина и золото. Транзисторы и другие схемные элементы, например резисторы, конденсаторы и индуктивности, вместе с соответствующими межсоединениями могут формироваться в пластине методами диффузии в ходе последовательности операций, создавая в итоге законченную электронную схему.

МОП-транзистор.

Наибольшее распространение получила МОП (металл-окисел-полупроводник) – структура, состоящая из двух близко расположенных областей кремния n -типа, реализованных на подложке p -типа. На поверхности кремния наращивается слой его двуокиси, а поверх этого слоя (между областями n -типа и слегка захватывая их) формируется локализованный слой металла, выполняющий роль затвора. Две упомянутые выше области n -типа, называемые истоком и стоком, служат соединительными элементами для входа и выхода соответственно. Через окна, предусмотренные в двуокиси кремния, выполняются металлические соединения с истоком и стоком. Узкий поверхностный канал из материала n -типа соединяет исток и сток; в других случаях канал может быть индуцированным – создаваемым под действием напряжения, приложенного к затвору. Когда на затвор транзистора с индуцированным каналом подается положительное напряжение, расположенный под затвором слой p -типа превращается в слой n -типа, и ток, управляемый и модулируемый сигналом, поступающим на затвор, течет от истока к стоку. МОП-транзистор потребляет очень небольшую мощность; он имеет высокое входное сопротивление, отличается низким током цепи стока и очень низким уровнем шумов. Поскольку затвор, оксид и кремний образуют конденсатор, такое устройство широко используется в системах компьютерной памяти (см. ниже ). В комплементарных, или КМОП-схемах, МОП-структуры применяются в качестве нагрузок и не потребляют мощности, когда основной МОП-транзистор находится в неактивном состоянии.

После завершения обработки пластины разрезают на части. Операция резки выполняется дисковой пилой с алмазными кромками. Каждый кристаллик (чип, или ИС) заключается затем в корпус одного из нескольких типов. Для подсоединения компонентов ИС к рамке выводов корпуса используется золотая проволока толщиной 25 мкм. Более толстые выводы рамки позволяют подсоединить ИС к электронному устройству, в котором она будет работать.

Надежность.

Надежность интегральной схемы примерно такая же, как у отдельного кремниевого транзистора, эквивалентного по форме и размеру. Теоретически транзисторы могут безотказно служить тысячи лет – один из важнейших факторов для таких областей применения, как ракетная и космическая техника, где единственный отказ может означать полный провал осуществляемого проекта.

Микропроцессоры и миникомпьютеры.

Впервые представленные публично в 1971 микропроцессоры выполняли большинство основных функций компьютера на единственной кремниевой ИС, реализованной на кристалле размером 5ґ5 мм. Благодаря интегральным схемам стало возможным создание миникомпьютеров – малых ЭВМ, где все функции выполняются на одной или нескольких больших интегральных схемах. Такая впечатляющая миниатюризация привела к резкому снижению стоимости вычислений. Выпускаемые в настоящее время мини-ЭВМ ценой менее 1000 долл. по своей производительности не уступают первым очень большим вычислительным машинам, стоимость которых в начале 1960-х годов доходила до 20 млн. долл. Микропроцессоры находят применение в оборудовании для связи, карманных калькуляторах, наручных часах, селекторах телевизионных каналов, электронных играх, автоматизированном кухонном и банковском оборудовании, средствах автоматического регулирования подачи топлива и нейтрализации отработавших газов в легковых автомобилях, а также во многих других устройствах. Большая часть мировой электронной индустрии, оборот которой превышает 15 млрд. долл., так или иначе зависит от интегральных схем. В масштабах всего мира интегральные схемы находят применение в оборудовании, суммарная стоимость которого составляет многие десятки миллиардов долларов.

Компьютерные запоминающие устройства.

В электронике термин «память» обычно относится к какому-либо устройству, предназначенному для хранения информации в цифровой форме. Среди множества типов запоминающих устройств (ЗУ) рассмотрим ЗУ с произвольной выборкой (ЗУПВ), приборы с зарядовой связью (ПЗС) и постоянные ЗУ (ПЗУ).

У ЗУПВ время доступа к любой ячейке памяти, находящейся на кристалле, одинаково. Такие устройства могут запоминать 65 536 бит (двоичных единиц, обычно 0 и 1), по одному биту на ячейку, и представляют собой широко используемый тип электронной памяти; на каждом чипе у них насчитывается ок. 150 тыс. компонентов. Выпускаются ЗУПВ емкостью 256 Кбит (К = 2 10 = 1024; 256 К = 262 144). В устройствах памяти с последовательной выборкой циркуляция запомненных битов происходит как бы по замкнутому конвейеру (в ПЗС используется именно такой тип выборки). В ПЗС, представляющем собой ИС специальной конфигурации, пакеты электрических зарядов могут размещаться под расположенными на малых расстояниях друг от друга крошечными металлическими пластинками, электрически изолированными от чипа. Заряд (или его отсутствие) может, таким образом, перемещаться по полупроводниковому устройству от одной ячейки к другой. В результате появляется возможность запоминания информации в виде последовательности единиц и нулей (двоичного кода), а также доступа к ней, когда это требуется. Хотя ПЗС не могут конкурировать с ЗУПВ по быстродействию, они способны обрабатывать большие объемы информации при меньших затратах, и их используют там, где память с произвольной выборкой не требуется. ЗУПВ, выполненное на такой ИС, является энергозависимым, и записанная в нем информация теряется при отключении питания. В ПЗУ информация заносится в ходе производственного процесса и хранится постоянно.

Разработки и выпуск ИС новых типов не прекращаются. В стираемых программируемых ПЗУ (СППЗУ) имеются два затвора, расположенные один над другим. При подаче напряжения на верхний затвор нижний может приобрести заряд, что соответствует 1 двоичного кода, а при переключении (реверсе) напряжения затвор может потерять свой заряд, что соответствует 0 двоичного кода.

В этой статье мы поговорим о микросхемах, какие типы бывают, как устроены и где используются. Вообще, в современной электронной технике трудно найти устройство, в котором бы не использовались микросхемы. Даже самые дешёвые китайские игрушки задействуют различные планарные, залитые компаундом чипы, на которые возложена функция управления. Причём с каждым годом они становятся всё более сложными внутри, но более простыми в эксплуатации и меньшими по размерам, снаружи. Можно сказать, что идёт постоянная эволюция микросхем.

Микросхема представляет собой электронное устройство или его часть способную выполнять ту или иную задачу. Если бы потребовалось решить такую задачу, которую решают многие микросхемы, на дискретных элементах, на транзисторах, то устройство, вместо маленького прямоугольника размерами 1 сантиметр на 5 сантиметров, занимало бы целый шкаф, и было бы намного менее надежным. А ведь так выглядели вычислительные машины ещё пол-сотни лет назад!

Электронный шкаф управления - фото

Конечно, для работы микросхемы недостаточно просто подать питание на неё, необходим еще так называемый "обвес ”, то есть те вспомогательные детали на плате, вместе с которыми микросхема сможет выполнять свою функцию.

Обвес микросхемы - рисунок

На рисунке выше красным выделена сама микросхема все остальные детали - это её "обвес ”. Очень часто микросхемы при своей работе нагреваются, это могут быть микросхемы стабилизаторов, микропроцессоров и других устройств. В таком случае чтобы микросхема не сгорела её нужно прикрепить на радиатор. Микросхемы, которые при работе должны нагреваться, проектируются сразу со специальной теплоотводящей пластиной - поверхностью, находящейся обычно с обратной стороны микросхемы, которая должна плотно прилегать к радиатору.

Но в соединении даже у тщательно отшлифованных радиатора и пластины, все равно будут микроскопические зазоры, в результате которых тепло от микросхемы будет менее эффективно передаваться радиатору. Для того чтобы заполнить эти зазоры применяют теплопроводящую пасту. Ту самую, которую мы наносим на процессор компьютера, перед тем как закрепить на нем сверху радиатор. Одна из наиболее широко применяемых паст, это КПТ–8 .

Усилители на микросхемах можно спаять буквально за 1-2 вечера, и они начинают работать сразу, не нуждаясь в сложной настройке и высокой квалификации настраивающего. Отдельно хочу сказать про микросхемы автомобильных усилителей, из обвеса там иногда бывает буквально 4-5 деталей. Чтобы собрать такой усилитель, при определенной аккуратности, не требуется даже печатная плата (хотя она желательна) и можно собрать все навесным монтажем, прямо на выводах микросхемы.

Правда, такой усилитель после сборки лучше сразу поместить в корпус, потому, что такая конструкция ненадежна, и в случае случайного замыкания проводов можно легко спалить микросхему. Поэтому рекомендую всем начинающим, пусть потратить немного больше времени, но сделать печатную плату.

Регулируемые блоки питания на микросхемах - стабилизаторах даже проще в изготовлении, чем аналогичные на транзисторах. Посмотрите, сколько деталей заменяет простейшая микросхема LM317:


Микросхемы на печатных платах в электронных устройствах могут быть припаяны как непосредственно, к дорожкам печати, так и посажены в специальные панельки.

Панелька под дип микросхему - фото

Разница заключается в том, что в первом случае для того чтобы нам заменить микросхему нам придется её предварительно выпаять. А во втором случае, когда мы посадили микросхему в панельку, нам достаточно достать микросхему из панельки, и её можно с легкостью заменить на другую. Типичный пример замены микропроцессора в компьютере.

Также, к примеру, если вы собираете устройство на микроконтроллере на печатной плате, и не предусмотрели внутрисхемное программирование, вы сможете, если впаяли в плату не саму микросхему, а панельку, в которую она вставляется, то микросхему можно достать и подключить к специальной плате программатора.

В таких платах уже впаяны панельки под разные корпуса микроконтроллеров для программирования.

Аналоговые и цифровые микросхемы

Микросхемы выпускаются различных типов, они могут быть как аналоговыми так и цифровыми. Первые, как становится ясно из названия, работают с аналоговой формой сигнала, вторые же работают с цифровой формой сигнала. Аналоговый сигнал может принимать различную форму.

Цифровой сигнал это последовательность единиц и нулей, высокого и низкого уровня сигналов. Высокий уровень обеспечивается подачей на вывод 5 вольт или напряжения близкого к этому, низкий уровень это отсутствие напряжения или 0 вольт.

Существуют также микросхемы АЦП (аналогово - цифровой преобразователь ) и ЦАП (цифро - аналоговый преобразователь ) которые осуществляет преобразование сигнала из аналогового в цифровой, и наоборот. Типичный пример АЦП используется в мультиметре, для преобразования измеряемых электрических величин и отображения их на экране мультиметра. На рисунке ниже АЦП - это черная капля, к которой со всех сторон подходят дорожки.

Микроконтроллеры

Сравнительно недавно, по сравнению с выпуском транзисторов и микросхем, был налажен выпуск микроконтроллеров. Что же такое микроконтроллер?

Это специальная микросхема, может выпускаться как в Dip так и в SMD исполнении, в память которой может быть записана программа, так называемый Hex файл . Это файл откомпилированной прошивки, которая пишется в специальном редакторе программного кода. Но мало написать прошивку, нужно перенести, прошить, её в память микроконтроллера.

Программатор - фото

Для этой цели служит программатор . Как многим известно, есть много разных типов микронтроллеров - AVR , PIC и другие, для разных типов нам требуются разные программаторы. Также существует и , каждый сможет найти и изготовить себе подходящий по уровню знаний и возможностей. Если нет желания делать программатор самому, то можно купить готовый в интернет магазине или заказать с Китая.

На рисунке выше изображен микроконтроллер в SMD корпусе. Какие же плюсы есть в использовании микроконтроллеров? Если раньше, проектируя и собирая устройство на дискретных элементах или микросхемах, мы задавали работу устройства путем определенного, часто сложного соединения на печатной плате с использованием множества деталей. То теперь нам достаточно написать программу для микроконтроллера, которая будет делать тоже самое программным путем, зачастую быстрее и надежнее, чем схема без применения микроконтроллеров. Микроконтроллер представляет собой целый компьютер, с портами ввода - вывода, возможностью подключения дисплея и датчиков, а также управление другими устройствами.

Конечно усовершенствование микросхем на этом не остановится, и можно предположить, что лет через 10 возникнут действительно микросхемы от слова "микро " - невидимые глазу, которые будут содержать миллиарды транзисторов и других элементов, размерами в несколько атомов - вот тогда действительно создание сложнейших электронных устройств станет доступно даже не слишком опытным радиолюбителям! Наш краткий обзор подошёл к концу, с вами был AKV .

Обсудить статью МИКРОСХЕМЫ

Варады Г.К. 404 взвод.

Интегральные схемы.

План:

1) Вступление (понятие, устройство).

2) Типы ИС.

3) Плюсы и минусы ИС.

4) Производство.

5) Применение.

Вступление.

(от лат. integratio - «соединение»).

ИС - это микроэлектронная схема, сформированная на крошечной пластинке (кристаллике, или "чипе") полупроводникового материала, обычно кремния, которая используется для управления электрическим током и его усиления. Типичная ИС состоит из множества соединенных между собой микроэлектронных компонентов, таких, как транзисторы, резисторы, конденсаторы и диоды, изготовленные в поверхностном слое кристалла. Размеры кремниевых кристаллов лежат в пределах от примерно 1,3 х 1,3 мм до 13 х13 мм. Прогресс в области интегральных схем привел к разработке технологий больших и сверхбольших интегральных схем (БИС и СБИС).

Классификация.

В зависимости от степени интеграции (количество элементов для цифровых схем) применяются следующие названия интегральных схем:

    малая интегральная схема (МИС) - до 100 элементов в кристалле,

    средняя интегральная схема (СИС) - до 1000 элементов в кристалле,

    большая интегральная схема (БИС) - до 10 тыс. элементов в кристалле,

    сверхбольшая интегральная схема (СБИС) - более 10 тыс. элементов в кристалле.

Ранее использовались также теперь устаревшие названия: ультрабольшая интегральная схема (УБИС) - от 1-10 млн до 1 млрд элементов в кристалле и, иногда, гигабольшая интегральная схема (ГБИС) - более 1 млрд. элементов в кристалле. В настоящее время, в 2010-х, названия «УБИС» и «ГБИС» практически не используются, и все микросхемы с числом элементов более 10 тыс. относят к классу СБИС.

Плюсы и минусы ИС.

Интегральные схемы обладают целым рядом преимуществ перед своими предшественниками -аналоговыми схемами, которые собирались из отдельных компонентов, монтируемых на шасси. ИС имеют меньшие размеры, более высокие быстродействие и надежность; они, кроме того, дешевле и в меньшей степени подвержены отказам, вызываемым воздействиями вибраций, влаги и старения. Миниатюризация электронных схем оказалась возможной благодаря особым свойствам полупроводников. Их основными плюсами считаются :

    Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» - что соответствует сигналу высокого уровня (1), либо «закрыт» - (0), в первом случае на транзисторе нет падения напряжения, во втором - через него не идёт ток . В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (активном) состоянии.

    Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например, 2,5-5 В) и низкого (0-0,5 В) уровня. Ошибка состояния возможна при таком уровне помех, когда высокий уровень интерпретируется как низкий и наоборот, что маловероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов, позволяющих исправлять ошибки.

    Большая разница уровней состояний сигналов высокого и низкого уровня (логических «0» и «1») и достаточно широкий диапазон их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора компонентов и настройки элементами регулировки в цифровых устройствах.

Надежность. Надежность интегральной схемы примерно такая же, как у отдельного кремниевого транзистора, эквивалентного по форме и размеру. Теоретически транзисторы могут безотказно служить тысячи лет - один из важнейших факторов для таких областей применения, как ракетная и космическая техника, где единственный отказ может означать полный провал осуществляемого проекта.

Производство.

Изготовление интегральной схемы может занимать до двух месяцев, поскольку некоторые области полупроводника нужно легировать с высокой точностью. В ходе процесса, называемого выращиванием, или вытягиванием, кристалла, сначала получают цилиндрическую заготовку кремния высокой чистоты. Из этого цилиндра нарезают пластины толщиной, например, 0,5 мм. Пластину в конечном счете режут на сотни маленьких кусочков, называемых чипами, каждый из которых в результате проведения описываемого ниже технологического процесса превращается в интегральную схему. Процесс обработки чипов начинается с изготовления масок каждого слоя ИС. Выполняется крупномасштабный трафарет, имеющий форму квадрата площадью ок. 0,1 м2. На комплекте таких масок содержатся все составляющие части ИС: уровни диффузии, уровни межсоединений и т.п. Вся полученная структура фотографически уменьшается до размера. кристаллика и воспроизводится послойно на стеклянной пластине. На поверхности кремниевой пластины выращивается тонкий слой двуокиси кремния. Каждая пластина покрывается светочувствительным материалом (фоторезистом) и экспонируется светом, пропускаемым через маски. Неэкспонированные участки светочувствительного покрытия удаляют растворителем, а с помощью другого химического реагента, растворяющего двуокись кремния, последний вытравливается с тех участков, где он теперь не защищен светочувствительным покрытием. Варианты этого базового технологического процесса используются в изготовлении двух основных типов транзисторных структур: биполярных и полевых (МОП).

Применение. Локальное\ Глобальное.

Локальное.

Непосредственно в схемотехнике, интегральная схема может взять на себя огромное количество задач. Среди них могут быть:

Логические элементы, Триггеры, Счётчики, Регистры, Буферные, преобразователи, Шифраторы, Дешифраторы, Цифровой компаратор, Мультиплексоры, Демультиплексоры, Сумматоры, Полусумматоры, Ключи, Микроконтроллеры, (Микро)процессоры (в том числе ЦП для компьютеров), Однокристалльные микрокомпьютеры, Микросхемы и модули памяти, ПЛИС (программируемые логические интегральные схемы).

Глобальное.

Микропроцессоры и миникомпьютеры. Впервые представленные публично в 1971 микропроцессоры выполняли большинство основных функций компьютера на единственной кремниевой ИС, реализованной на кристалле размером 5х5 мм. Благодаря интегральным схемам стало возможным создание миникомпьютеров - малых ЭВМ, где все функции выполняются на одной или нескольких больших интегральных схемах. Такая впечатляющая миниатюризация привела к резкому снижению стоимости вычислений. Выпускаемые в настоящее время мини-ЭВМ ценой менее 1000 долл. по своей производительности не уступают первым очень большим вычислительным машинам, стоимость которых в начале 1960-х годов доходила до 20 млн. долл. Микропроцессоры находят применение в оборудовании для связи, карманных калькуляторах, наручных часах, селекторах телевизионных каналов, электронных играх, автоматизированном кухонном и банковском оборудовании, средствах автоматического регулирования подачи топлива и нейтрализации отработавших газов в легковых автомобилях, а также во многих других устройствах. Большая часть мировой электронной индустрии, оборот которой превышает 795млрд рублей., так или иначе зависит от интегральных схем. В масштабах всего мира интегральные схемы находят применение в оборудовании, суммарная стоимость которого составляет многие сотни миллиардов рублей.

Литература.

Мейзда Ф. Интегральные схемы: технология и применения. М., 1981 Зи С. Физика полупроводниковыхприборов. М., 1984 Технология СБИС. М., 1986 Маллер Р., Кеймин С. Элементы интегральных схем. М.,1989 Шур М.С. Физика полупроводниковых приборов. М., 1992

Элементную базу всех цифровых устройств (ЦУ) [Digital Devices ] составляют интегральные схемы (ИС) [Integrated Circuit (IC )], которые также называются микросхемами (МС) или чипами (микрочипами ) [Chip (Microchip )].

Интегральные схемы – это электронные приборы, выполненные на тонких полупроводниковых пластинах, содержащие электронные элементы и выполненные внутри корпуса определённого типа.

ИС со времени изобретения в США в 1959 г. постоянно совершен­ствуются и усложняются. Быстрый прогресс в области изготовления интегрируемых схем привел к резкому росту объёма их производства и снижению стоимости. В результате использования МС стало возможным не только в сложных специализированных устройствах (таких, как ЭВМ), но и в разнообразных измерительных приборах, управляющих и контролирующих системах. Круг потребителей МС непрерывно расширяется.

Характеристикой сложности ИС является уровень интеграции , оцениваемый либо числом базовых логических элементов (ЛЭ) [Logic (al ) Element /Component /Gate /Unit ], либо числом транзисторов , которые размещены на кристалле.

В зависимости от уровня интеграции ИС делятся на несколько категорий: МИС, СИС, БИС, СБИС, УБИС (соответственно малые, средние, большие, сверхболь­шие, ультрабольшие ИС).

МИС [SSI = Small /Standard Scale Integration – малая/стандартная степень (уровень) интеграции] – это МС с очень небольшим числом элементов (несколько десятков). МИС реализуют простейшие логические преобразования и обладают очень большой уни­версальностью – даже с помощью одного типа ЛЭ (например, И-НЕ) можно построить любое ЦУ.

СИС [MSI = Medium Scale Integration – средняя степень (уровень) интеграции] – это МС со степенью интеграции от 300 до нескольких тысяч транзисторов (обычно до 3000). В виде СИС выпускаются в готовом виде такие схемы, как малоразрядные регистры, счётчики, дешиф­раторы, сумматоры и т. п. Номенклатура СИС должна быть более широкой и разнообразной, т. к. их универсальность по сравнению с МИС снижается. В развитых сериях стандартных ИС насчитываются сотни типов СИС.

БИС [LSI = Large Scale Integration – большая (высокая) степень (уровень) интеграции] – МС с числом логических вентилей от 1000 до 5000 (в некоторых классификациях – от 500 до 10000). Первые БИС были разработаны в начале 70-х годов прошлого века.

СБИС [VLSI = Very Large-Scale Integration – очень большая (высокая) степень (уровень) интеграции или GSI = Giant Scale Integration – гигантская (сверхбольшая, сверхвысокая) степень (уровень) интеграции] – это МС, содержащие на кристалле от 100000 до 10 млн. (VLSI ) или более 10 млн. (GSI ) транзисторов или логических вентилей.


УБИС [ULSI = Ultra Large Scale Integration – ультрабольшая (ультравысокая) степень (уровень) интеграции] – это МС, в которых число транзисторов на кристалле составляет от 10 млн. до 1 млрд. К таким схемам можно отнести современные процессоры.

Приведённые выше данные о МС разной степени интеграции для наглядности сведены в табл. 1.

Коняев Иван Сергеевич,студент 3 курса Армавирского механикотехнологического института(филиала) ФГБОУ ВПО КубГТУ, г. Армавир[email protected]

Моногаров Сергей Иванович,кандидат технических наук, доцент кафедры внутризаводского электрооборудования и автоматики Армавирского механикотехнологического института(филиала) ФГБОУ ВПО КубГТУ, г. Армавир[email protected]

Принципыпостроения больших интегральных схем

Аннотация. Данная статья посвящена вопросампринципов построения больших интегральных схем(БИС). Ключевые слова: БИС,большая интегральная микросхема, базовые матричные кристаллы, программируемые логические устройства.

В настоящее время в микроэлектронной аппаратуре используются как специализированные, так и универсальные микросхемы различной степени интеграции. В то же время наблюдается определённая тенденция широкого применения интегральных микросхем высокой степени интеграции –больших интегральных микросхем (БИС), о которых и пойдёт речь в данной статье.Универсальные микросхемы выпускаются большими тиражами и применяются в широком диапазоне электронных устройств, в то время как специализированные микросхемы выпускаются ограниченными тиражами и имеют строго определённую область применения.Специализированные БИС, выполненные на базовых матричных кристаллах(БМК)и программируемых логических устройствах(ПЛУ)имеют особенно широкое применение. Столь широкое применение обусловлено тем, что автоматизированное проектирование таких БИС занимает относительно короткий промежуток времени: порядка нескольких недель для БИС на основе БМК, нескольких дней –для БИС на основе ПЛУ.Рассмотрим принципы построения и параметры базовых матричных кристаллов. В состав БМК входят заранее сформированная матрица базовых ячеек (располагается в центральной части), а так же группу буферных ячеек, которые располагаются по периферии кристалла (рис. 1).В свою очередь в состав ячеек входят группы нескоммутированных элементов (транзисторов, конденсаторов, резисторов) и отрезков полупроводниковых шин, предназначенных для реализации пересекающихся электрических связей.Из элементов ячеек с помощью электрических связей в виде металлических (проводниковых) и полупроводниковых шин формируются различные функциональные элементы (триггеры, счетчики, регистры и др.), буферные элементы, а так жесоединения между ними.

А) б) в)Рисунок 1 –Типовые структуры БМК: а) со сплошным массивом однородных ячеек; б) с массивом однородных ячеек или макроячеек, разделённых вертикальными и горизонтальными каналами для проводников; в) с массивом неоднородных ячеек, разделённых горизонтальными каналами; 1 –матрица базовых ячеек; 2 –матрица буферных ячеек; 3,5,8 –ячейки матриц, 4,7,10 –буферные ячейки, 6,9 –макроячейки; 11,12 –горизонтальные каналы; 13 –вертикальные каналы

В данном типе БИС, как правило, основные функциональные элементы потребляют малое количество энергии, достаточное для обеспечения необходимого быстродействия. В свою очередь, буферные элементы, которые осуществляют внешние связи матричное БИС, потребляют более высокую мощность, что обусловлено необходимостью для согласования по уровням логического напряжения определённой величины, нагрузочной способности и помехоустойчивости. В состав ячеек входит множестворазнообразных активных и пассивных элементов. При этом к параметрам пассивных элементов предъявляются требования достаточно высокой точности и стабильности. В состав БМК, предназначенных для изготовления аналогоцифровых БИС, входят обычно две матрицы ячеек, для формирования соответственно аналоговых и цифровых устройств. Базовые матричные кристаллы для цифровых и аналоговых БИС формируютсяна основе биполярных транзисторов и полевых транзисторов с изолированным затвором. В аналоговых БИС широкое применение получили биполярные транзисторы с высокой крутизной проходной вольтамперной характеристики.В свою очередь матрицы могут состоять из однородных или неоднородных ячеек. В БМК, предназначенныхдля реализации цифровых БИС с невысокой степенью интеграции (около 1000 логических элементов)используются однородные ячейки, в то время как для цифровых БИС с высокой степенью интеграции (около 10000 логических элементов) и цифроаналоговых БИС –матрицы с неоднородными ячейками. Применяются два способа организации ячеек матрицы БМК:1.На основе элементов ячейки может быть сформирован один базовый логический элемент, выполняющий элементарную функцию (НЕ, ИНЕ, ИЛИНЕ с разветвлениями по входам и выходам). Для реализации более сложных функций используют несколько ячеек. Число, разновидности и параметры элементов определяются электрической схемой базового логического элемента.2.На основе элементов ячейки может быть сформирован любой функциональный элемент библиотеки. Типы элементови их число определяются электрической схемой самого сложного функционального элемента.При первом способе построения ячеек можно получить достаточно высокие коэффициент их использования в составе матрицы, коэффициент использования площади БМК и, соответственно,повышенную степень интеграции БИС. При втором способе построения ячеек БМК упрощается система автоматизированного проектирования БИС, так как посадочные места одинаковых по форме и размерам ячеек заранее определены. Однако, если в проектируемой БИС используется достаточно много простых функциональных элементов библиотеки с низким коэффициентом использования элементов ячейки, снижается коэффициент использования площади кристалла, а значит истепень интеграции БИС.В матричных БИС электрические соединения выполняются с помощью металлических (проводниковых) и полупроводниковых (монои поликристаллических) шин. Шины цепей питания и заземления, как правило, выполняются из алюминия, который характеризуется низким удельным сопротивлением. Легированные полупроводниковые шины, имеющие повышенноеудельное сопротивление, в основном применяются для реализации коротких слаботочных сигнальных цепей.Для создания электрических связей между элементами используется однои многоуровневая металлизация. По окончании проектирования, набор параметров и характеристик БМК должен быть достаточно полным для потребителя. К типовым параметрам и характеристикам БМК относятся:1.технология изготовления;2.число ячеек в кристалле;3.структура (набор элементов) ячейки;4.наименование, типовые электрические параметры, схемы и фрагменты типовых функциональных элементов, формируемых на основе элементов ячеек;5.параметры элементов вводавывода;6.число периферийных контактных площадок;7.требования к источнику питания;8.указания по расположению и использованию контактных площадок для цепей питания и заземления и др.;БМК могут послужить основой для цифровых, аналоговых, цифроаналоговых и аналогоцифровых больших интегральных схем. В то же время, совокупность элементов БМК, предназначенных для применения в аналоговых БИС, позволяетформировать усилители, компараторы, аналоговые цифровые ключи и другие устройства.Не так давно основнымприменением БМК являлисьсредства вычислительной техники исистемы управления технологическими процессами. Некоторые БМК, например Т34ВГ1(КА1515ХМ1216), применялись в советских клонах компьютера ZX Spectrumв качестве контроллера внешних устройств. Аналог БМК -микросхема ULA в компьютерах Синклера. В настоящее время БМК в большинстве применений вытеснены ПЛИС(программируемая логическая интегральная схема–примечание автора), не требующими заводского производственного процесса для программирования и допускающими перепрограммирование. Далее рассмотрим программируемые логические матрицы.Программируемые логические устройства имеют матричную структуру и шинную организацию элементов (каждый элемент соединяется вертикальными и горизонтальными шинами). В ПЛУ используются программируемые матрицы И, ИЛИ и их комбинации:непрограммируемое И –программируемое ИЛИ;программируемое И –непрограммируемое ИЛИ;программируемое И –программируемое ИЛИ.Существует две разновидности программируемых логических устройств:

программируемые в условиях производства специализированных БИС на основе кристалловполуфабрикатов с помощью одного заказного фотошаблона по технологии, подобной технологии изготовления матричных БИС;

программируемые потребителемизготовителем аппаратуры ©загрузкойª (введением информации) внутренних регистров или физическим воздействием на отдельные элементы матриц (пережигание перемычек, пробой диодов, изменение режимов работы полупроводниковых приборов).Логические устройства, программируемые потребителем, являются универсальными микроэлектронными устройствами, которые ©настраиваютсяª на заданную функцию с помощью автоматических программаторов.В практике широко используются такие разновидности ПЛУ, как программируемые логические матрицы (ПЛМ) и программируемые постоянные запоминающие устройства (ППЗУ).Применение ПЛМ позволяет уменьшить количество логических элементов и связей в логических устройствах, что особенно важно для регулярных структур, реализуемых на кристаллах БИС.Разработаны и применяются однократно программируемые ПЛМ и многократно программируемые –репрограммируемые ПЛМ (РПЛМ). Развиваются методы проектирования и производства матричных БИС с реконструируемыми соединениями (МаБИСРС) и с программируемой архитектурой (МаБИСПА) –субсистемына пластинах.Программирование с использованием масок (фотошаблонов) металлизации или контактных окон в оксиде широко применяется в ПЛМ на основе биполярных транзисторов и диодов. На рис.2 показана схема соединений элементов в диодной ПЛМ. Входные сигналы положительной полярности подаются на входы а –е, произведения М0 –М2 снимаются с нагрузочных резисторов R. Преимуществами диодных матриц являются простота и малая занимаемая на кристалле площадь, а недостатком –значительные токи, потребляемые по входам матрицы.Использование многоэмиттерных транзисторов вместо диодов позволяет существенно уменьшить входные токи (в BN раз, BN –нормальный коэффициент передачи тока транзистора) и повысить быстродействие ПЛМ. На рис.3 представлена схема фрагмента ПЛМ на биполярных многоэмиттерных транзисторах.Матрицы на основе МОПтранзисторов обеспечивают наиболее высокую плотность компоновки элементов, имеют минимальную потребляемую мощность, однако уступают по быстродействию матрицам на биполярных транзисторах.Достоинством ПЛМ с масочным программированием являются малая площадь и высокая надежность, что обусловило их широкое применение в составе специализированных и микропроцессорных БИС. Такие ПЛМ однократно программируются изготовителем в процессе производствамикросхемы, что сужает область их применения.Большей гибкостью, особенно при использовании в периферийных устройствах, обладают электрически программируемые ПЛМ, “настройка” которых на реализацию заданных функций выполняется пользователем.

Рисунок 2 –Фрагмент диодной ПЛМ

Рисунок 3 –Фрагмент ПЛМ на БТ

На рис.4 показанынаиболее распространенные элементы матрицс электрическим программированием. Программирование осуществляется расплавлением перемычек (обычно нихромовых или поликремниевых) или пробоем диодов (pn переходов или барьеров Шотки).

Рисунок 4 –Элементы ПЛМ с электрическим программированием

Перемычки имеют сопротивление около 10 Ом и расплавляются (размыкаются) при пропускании через них импульса тока, амплитуда которого значительно больше амплитуды тока считывания. Для разрушения нихромовых или поликремниевых перемычек достаточно тока 20…50 мА; время расплавления составляет 10…200 мс.Диоды пробиваются (закорачиваются) при подаче импульса обратного напряжения от источника с небольшим внутренним сопротивлением, дающим достаточный ток (200…300 мА). Это вызывает лавинный и термический пробой pn переходов (барьера Шотки) и миграцию частиц металла внутрь полупроводника с образованием надежного низкоомного контакта (штриховые линии на рис.4). Время образования цепи 0,02…0,05 мс.Для электрического программирования и контроля ПЛМ используются специальные установки, управляемые ЭВМ. Исходной информацией для программирования и контроля являются:таблица истинности;признак пережигания (пробоя) лог. единиц или нулей (в зависимости от начальной информации незапрограммированной ПЛМ);параметры программирующих импульсов.Управляющая программа делает перебор адресов на входах от 00…0 до 11…1. На ПЛМ подаются питающие напряжения, а при наличии в исходной информации признаков программирования –импульс пережигания (пробоя). После программирования выполняется контроль и результат проверки с указанием совпадения (несовпадения) с таблицей истинности выводится на печать.ПЛМ применяются в современных периферийных и основных компьютерных устройствах платы расширения в системе Plug and Play, которые и имеют специальную микросхему -ПЛИС. Она позволяет плате сообщать свой идентификатор и список требуемых и поддерживаемых ресурсов.Для создания СБИС(сверх больших интегральных схем)и субсистем на пластинах применяют регулярные структуры (рис.5) с матрицей ячеек достаточно большой степени интеграции. Программирование элементов соединений выполняется их созданием или нарушением.

Рисунок 5 –Фрагмент БИС с реконструируемымисоединениями

Матричные БИС с реконструируемыми соединениями обычно создают на основе КМОПтранзисторов, характеризующихся минимальной потребляемой мощностью. Для таких транзисторов применимы все типы перемычек.Перспективным является использование матричных БИС с реконструируемыми соединениями для построения многопроцессорных субсистем. Контакты между соединительными проводниками различных уровней программируются лучом лазера (расплавляется диэлектрик), некоторые связи разрезаются.Лазерное реконструирование при управлении от ЭВМ длится около 1 ч. Такие микросистемы могут содержать до 100 миллионов транзисторов.Плотность компоновки для СБИС при минимальном размере элементов 0,5…2 мкм достигает 20 тысяч транзисторов на квадратный миллиметр.Внастоящее время существуютэлементыпамяти, сохраняющие информацию при отключении напряжения питания, что позволяет создавать ПЛМ со стиранием и перезаписью реализуемых функций –репрограммируемые логические матрицы (РПЛМ).Значительное распространение в РПЛМ получили МОПтранзисторы с плавающим затвором и лавинной инжекцией (рис.6). Структура такого транзистора аналогична обычному МОПтранзистору с поликремниевым затвором, который гальванически не связан с остальной схемой. В исходном состоянии транзистор не проводит ток (см. рис.6,а). Для перехода в проводящее состояние (запись) между истоком и стоком транзистора прикладывается достаточно большое напряжение (около 50 В) в течение примерно 5 мс. Это вызывает лавинный пробой истокового (стокового) pn перехода и инжекцию электронов в поликремниевый затвор. Заряд, примерно равный 107 Кл/см2,захваченный затвором (см. рис.6,б), индуцирует канал, соединяющий исток и сток, и может сохраняться длительное время (10…100 лет) после снятия напряжения, так как затвор окружен оксидным слоем, имеющим очень малую проводимость.Стирание информации осуществляется при облучении ультрафиолетовыми лучами сэнергией, достаточной для выбивания электронов из затвораи переноса их в подложку (рис.6). Стирание можно также осуществить, используя ионизирующее, например рентгеновское излучение.Считывание информации из матрицы выполняется при подаче напряжения питания 5…15 В и контроле тока, протекающего через транзистор.Для организации выборки определенных ячеек вматрицу (см. рис.6,в) последовательно с транзисторами с плавающими затворами включают обычные МОПтранзисторы.

Рис.6. ПЛМ на МОПтранзисторах с плавающим затвором:а) выключенный (стертый) запоминающий транзистор;б)включенный запоминающий транзистор;в) фрагмент матрицы (транзистор выборки Тв, запоминающий транзистор Тз);1 –исток; 2 –плавающий затвор из поликристаллического кремния; 3 –сток; 4 –инжектированный заряд; 5 –область обеднения

Наряду с БИСс реконструируемыми соединениями развивается направление, связанное с созданием БИС и СБИС с программируемой архитектурой и выполняемых в виде субсистем на пластинах. Перестройка архитектуры субсистемы осуществляется с помощью встроенных элементов коммутации с памятью. Причем элементы памяти могут выполняться как на типовых МОПили КМОПтранзисторах, так и на транзисторах с лавинной инжекцией.На рис.7представлена структурная схема матричной БИС с программируемой архитектурой. Шина управления (ШУ) служит для записи в блоки распределенной памяти (П) кодов настройки (программирования) архитектуры субсистемы на определенную задачу. Решающие блоки матрицы (М) соединяются между собой распределенными коммутаторами (К) через коммутационную шину (ШК).

Рисунок 7 –Структурная схема матричной БИС с программируемой архитектурой

Применение СБИС с программируемой архитектурой позволяет получить очень высокую плотность компоновки, автоматизировать процесс сборки.

Ссылки на источники1.Образовательный сайт www.studfiles.ruURL: http://www.studfiles.ru/dir/cat39/subj1381/file15398/view155035/page2.html2.Свободная энциклопедия Википедия URL: http://ru.wikipedia.org/wiki/%D0%91%D0%9C%D0%9A3.Свободная энциклопедия ВикипедияURL: http://ru.wikipedia.org/wiki/%D0%9F%D0%9B%D0%98%D0%A1

Konyaev Ivan Sergeyevich,3rd year student of Armavir Institute of Mechanics and Technology (branch) Kuban State University of Technology, ArmavirMonogarov Sergey Ivanovich,Candidate of Technical Sciences, Associate Professor of inplant electrical equipment and automation, Armavir Institute of Mechanics and Technology (branch) Kuban State University of Technology, ArmavirPrinciples of building largescale integrated schemesAbstract:This article focuses on research of the principles of construction of largescale integrated circuits (LSIs).Keywords:BIS, a large integrated circuit, the base matrix crystals, programmable logic devices.



Статьи по теме