Импульсная характеристика rc цепи. Переходная и импульсная характеристики линейных цепей

Переходная характеристика используется при расчете реакции линейной электрической цепи, когда на ее вход подается импульс
произвольной формы. При этом входной импульс
аппроксимируют множеством ступенек и определяют реакцию цепи на каждую ступеньку, а затем находят интегральную цепи
, как сумму реакций на каждую составляющую входного импульса
.

Переходная характеристика или переходная функция
цепи –
это ее обобщенная характеристика, являющаяся временной функцией, численно равной реакции цепи на единичный скачок напряжения или тока на ее входе, при нулевых начальных условиях (рис. 13.11);

другими словами, это отклик цепи, свободной от начального запаса энергии на функцию
на входе.

Выражение переходной характеристики
зависит только от внутренней структуры и значения параметров элементов цепи.

Из определения переходной характеристики цепи следует, что при входном воздействии
реакция цепи
(рис. 13.11).

Пример. Пусть цепь подключается к источнику постоянного напряжения
. Тогда входное воздействие будет иметь вид, реакция цепи – , а переходная характеристика цепи по напряжению –
. При

.

Умножение реакции цепи
на функцию
или
означает, что переходная функция
при
и
при
, что отражаетпринцип причинности в линейных электрических цепях, т.е. отклик (на выходе цепи) не может появиться раньше момента приложения сигнала к входу цепи.

Виды переходной характеристик.

Различают следующие виды переходной характеристики:

(13.5)

– переходная характеристика цепи по напряжению;

– переходная характеристика цепи по току;

– переходное сопротивление цепи, Ом;

– переходная проводимость цепи, См,

где
– уровни входного ступенчатого сигнала.

Переходную функцию
для любого пассивного двухполюсника можно найти классическим или операторным методом.

Расчет переходной характеристики классическим методом. Пример.

Пример. Рассчитаем переходную характеристику по напряжению для цепи (рис. 13.12, а ) с параметрами .

Решение

Воспользуемся результатом, полученном в п.11.4. Согласно выражению (11.20) напряжение на индуктивности

где
.

Проведем масштабирование согласно выражению (13.5) и построение функции
(рис. 13.12,б ):

.

Расчет переходной характеристики операторным методом

Комплексная схема замещения исходной цепи примет вид на рис. 13.13.


Передаточная функция этой цепи по напряжению:

где
.

При
, т.е. при
, изображение
, а изображение напряжения на катушке
.

В этом случае оригинал
изображения
есть переходная функция цепи по напряжению, т.е.

или в общем виде:

, (13.6)

т.е. переходная функция
цепи равна обратному преобразованию Лапласа ее передаточной функции
, умноженной на изображение единичного скачка .

В рассматриваемом примере (см. рис. 13.12) передаточная функция по напряжению:

где
, а функция
имеет вид .

Примечание . Если на вход цепи подано напряжение
, то в формуле переходной функции
время необходимо заменить на выражение
. В рассмотренном примере запаздывающая передаточная функция по напряжению имеет вид:

Выводы

Переходная характеристика введена, в основном, по двум причинам.

1. Единичное ступенчатое воздействие
– скачкообразное, и потому довольно тяжелое для любой системы или цепи внешнее воздействие. Следовательно, важно знать реакцию системы или цепи именно при таком воздействии, т.е. переходную характеристику
.

2. При известной переходной характеристике
с помощью интеграла Дюамеля (см. далее пп.13.4, 13.5) можно определить реакцию системы или цепи при любой форме внешних воздействий.

Расчет отклика цепи во многих случаях может быть упрощен, если входной сигнал представить суммой элементарных воздействий в виде прямоугольных импульсов малой длительности. Для этого сначала рассмотрим связь между функциями и, изображенными на рис.5.8а,6, которые можно записать в виде:

Вторая функция является единичным импульсом, который рассмотрен нами в п.2.4. Как видно, функция является производной от функции, т.е. . Осуществим в этих функциях предельный переход при. При этом функция перейдет в единичную функцию, а функция в функцию. Тогда в силу равенства следует, что единичный импульс, или - функция является производной единичной функции.

Для линейной цепи отсюда заключаем, что ее отклик на единичный импульс, называемый импульсной характеристикой цепи, является производной переходной характеристики цепи, т.е. или

Размерность импульсной характеристики равна размерности переходной характеристики, деленной на время.

Нахождение импульсной характеристики в большинстве случаев проще, чем нахождение переходной характеристики. Действительно, как показано в п. 2.4, спектральная функция единичного импульса, а поэтому для импульсной характеристики с помощью интеграла Фурье получаем выражение

Из этого выражения следует, что спектральная функция характеристики равна комплексному коэффициенту передачи цепи, т.е. или, пользуясь прямым преобразованием Фурье, запишем:

To есть импульсная характеристика цепи так же, как и переходная характеристика, определяется через коэффициент передачи, но для импульсной характеристики в большинстве случаев подынтегральное выражение в интеграле Фурье оказывается проще.

В качестве примера применим соотношение (5.14) для определения спектра импульсной характеристики интегрирующей цепи, переходная характеристика которой. Для импульсной характеристики получаем

Пользуясь здесь выражением (5.14), необходимо учесть, что переходная характеристика при тождественно равна нулю, и поэтому нижний предел в интеграле выражения (5.14) будет нуль. Тогда спектральная функция импульсной характеристики равна

т.е. получили коэффициент передачи интегрирующей цепи, соответствующий ранее полученному выражению (3.16).

Зная импульсную характеристику, можно найти отклик цепи на воздействие сигнала любой формы, либо предварительно найдя по соотношению (5.12) переходную характеристику, а затем воспользовавшись одним из выражений интеграла Дюамеля, либо непосредственно через функцию. В последнем случае входную функцию, т.е. воздействующий сигнал необходимо представить в виде суммы импульсов, как показано на рис. 5.9.

Такое представление функции будет точнее, если, т.е. если она представлена суммой бесконечно большого числа бесконечно малых по длительности импульсов, являющихся здесь элементарными воздействиями. Если бы элементарным воздействием был единичный импульс, площадь которого равна единице, то откликом цепи на такой импульс, появляющийся в момент времени, была бы импульсная характеристика. В рассматриваемом случае элементарный импульс имеет величину, равную мгновенному значению функции в момент и длительность, равную, т.е. его площадь равна. Тогда откликом на элементарное воздействие будет величина. Отклик цепи на воздействие, заданное функцией, будет суммой откликов на все элементарные воздействия, временное положение которых соответствует интервалу от 0 до, т.е.

Это выражение, являющееся еще одним видом записи интеграла Дюамеля, называется также сверткой функций. Оно по виду совпадает с оригиналом свертки изображений двух функций в формуле (4.21).

Импульсную характеристику цепи можно получить с помощью эксперимента, наблюдая отклик цепи (выходное напряжение) на электронном осциллографе. На вход цепи необходимо подать импульс весьма малой длительности. Для примера рассмотрим импульсную характеристику последовательного колебательного контура, считая, что выходное напряжение снимается с емкости С. Выше в п.1.6 мы рассмотрели переходный процесс при включении постоянного напряжения на такой контур. Если величина поданного напряжения равна единице, то напряжение на емкости, являющееся переходной характеристикой цепи равно, согласно (1.33),

Эта переходная характеристика представлена на рис.5.10а. Тогда импульсная характеристика контура

Считая добротность контура большой, полагаем и тогда первым членом можно пренебречь:

Эта характеристика представлена на рис.5.10б. Она соответствует осциллограмме свободных колебаний в контуре, рассмотренных нами в п.1.5.

Таким образом, для того чтобы экспериментально наблюдать импульсную характеристику контура, необходимо на вход контура подать импульс малой длительности, т.е. (как было пояснено в п.2.4) чтобы его длительность удовлетворяла условию.

Академия России

Кафедра Физики

Лекция

Переходные и импульсные характеристики электрических цепей

Орел 2009

Учебные и воспитательные цели:

Разъяснить слушателям сущность переходной и импульсной характеристик электрических цепей, показать связь между характеристиками, обратить внимание на применение рассматриваемых характеристик для анализа и синтеза ЭЦ, нацелить на качественную подготовку к практическому занятию.

Распределение времени лекции

Вступительная часть……………………………………………………5 мин.

Учебные вопросы:

1. Переходные характеристики электрических цепей………………15 мин.

2. Интегралы Дюамеля………………………………………………...25 мин.

3. Импульсные характеристики электрических цепей. Связь между характеристиками………………………………………….………...25 мин.

4. Интегралы свертки………………………………………………….15 мин.

Заключение……………………………………………………………5 мин.


1. Переходные характеристики электрических цепей

Переходная характеристика цепи (как и импульсная) относится к временным характеристикам цепи, т. е. выражает некоторый переходный процесс при заранее установленных воздействиях и начальных условиях.

Для сравнения электрических цепей по их реакции к этим воздействиям, необходимо цепи поставить в одинаковые условия. Наиболее простыми и удобными являются нулевые начальные условия.

Переходной характеристикой цепи называют отношение реакции цепи на ступенчатое воздействие к величине этого воздействия при нулевых начальных условиях.

По определению ,

где – реакция цепи на ступенчатое воздействие;

– величина ступенчатого воздействия [В] или [А].

Так как и делится на величину воздействия (это вещественное число), то фактически – реакция цепи на единичное ступенчатое воздействие.

Если переходная характеристика цепи известна (или может быть вычислена), то из формулы можно найти реакцию этой цепи на ступенчатое воздействие при нулевых НУ

.

Установим связь между операторной передаточной функцией цепи, которая часто известна (или может быть найдена), и переходной характеристикой этой цепи. Для этого используем введенное понятие операторной передаточной функции:

.

Отношение преобразованной по Лапласу реакции цепи к величине воздействия представляет собой операторную переходную характеристику цепи:

Следовательно .

Отсюда находится операторная переходная характеристика цепи по операторной передаточной функции.

Для определения переходной характеристики цепи необходимо применить обратное преобразование Лапласа:

воспользовавшись таблицей соответствий или (предварительно) теоремой разложения.

Пример: определить переходную характеристику для реакции напряжение на емкости в последовательной -цепи (рис. 1):

Здесь реакция на ступенчатое воздействие величиной :

,

откуда переходная характеристика:

.

Переходные характеристики наиболее часто встречающихся цепей найдены и даны в справочной литературе.


2. Интегралы Дюамеля

Переходную характеристику часто используют для нахождения реакции цепи на сложное воздействие. Установим эти соотношения.

Условимся, что воздействие является непрерывной функцией и подводится к цепи в момент времени , а начальные условия – нулевые.

Заданное воздействие можно представить как сумму ступенчатого воздействия приложенного к цепи в момент и бесконечно большого числа бесконечно малых ступенчатых воздействий, непрерывно следующих друг за другом. Одно из таких элементарных воздействий, соответствующих моменту приложения показано на рисунке 2.

Найдем значение реакции цепи в некоторый момент времени .

Ступенчатое воздействие с перепадом к моменту времени обуславливает реакцию, равную произведению перепада на значение переходной характеристики цепи при , т. е. равную:

Бесконечно малое же ступенчатое воздействие с перепадом , обуславливает бесконечно малую реакцию , где есть время, прошедшее от момента приложения воздействия до момента наблюдения. Так как по условию функция непрерывна, то:

В соответствии с принципом наложения реакции будет равна сумме реакций, обусловленных совокупностью воздействий, предшествующих моменту наблюдения , т. е.

.

Обычно в последней формуле заменяют просто на , поскольку найденная формула верна при любых значениях времени :

.

Или, после несложных преобразований:

.

Любое из этих соотношений и решает задачу вычисления реакции линейной электрической цепи на заданное непрерывное воздействие по известной переходной характеристики цепи . Эти соотношения называют интегралами Дюамеля.

3. Импульсные характеристики электрических цепей

Импульсной характеристикой цепи называют отношение реакции цепи на импульсное воздействие к площади этого воздействия при нулевых начальных условиях.

По определению ,

где – реакция цепи на импульсное воздействие;

– площадь импульса воздействия.

По известной импульсной характеристике цепи можно найти реакцию цепи на заданное воздействие: .

В качестве функции воздействия часто используется единичное импульсное воздействие называемое также дельта-функцией или функцией Дирака.

Дельта-функция – это функция всюду равная нулю, кроме , а площадь ее равна единице ():

.

К понятию дельта-функция можно прийти, рассматривая предел прямоугольного импульса высотой и длительностью , когда (рис. 3):

Установим связь между передаточной функцией цепи и ее импульсной характеристикой, для чего используем операторный метод.

По определению:

.

Если воздействие (оригинал) рассматривать для наиболее общего случая в виде произведения площади импульса на дельта-функцию, т. е. в виде , то изображение этого воздействия согласно таблицы соответствий имеет вид:

.

Тогда с другой стороны, отношение преобразованной по Лапласу реакции цепи к величине площади импульса воздействия, представляет собой операторную импульсную характеристику цепи:

.

Следовательно, .

Для нахождения импульсной характеристики цепи необходимо применить обратное преобразование Лапласа:

Т. е. фактически .

Обобщая формулы, получим связь между операторной передаточной функцией цепи и операторными переходной и импульсной характеристиками цепи:

Таким образом, зная одну из характеристик цепи, можно определить любые другие.

Произведем тождественное преобразование равенства, прибавив к средней части .

Тогда будем иметь .

Поскольку представляет собой изображение производной переходной характеристики, то исходное равенство можно переписать в виде:

Переходя в область оригиналов, получаем формулу, позволяющую определить импульсную характеристику цепи по известной ее переходной характеристике:

Если , то .

Обратное соотношение между указанными характеристиками имеет вид:

.

По передаточной функции легко установить наличие в составе функции слагаемого .

Если степени числителя и знаменателя одинаковы, то рассматриваемое слагаемое будет присутствовать. Если же функция является правильной дробью, то этого слагаемого не будет.

Пример: определить импульсные характеристики для напряжений и в последовательной -цепи, показанной на рисунке 4.

Определим :

По таблице соответствий перейдем к оригиналу:

.

График этой функции показан на рисунке 5.

Рис. 5

Передаточная функция :

Согласно таблице соответствий имеем:

.

График полученной функции показан на рисунке 6.

Укажем, что такие же выражения можно было получить с помощью соотношений, устанавливающих связь между и .

Импульсная характеристика по физическому смыслу отражает собой процесс свободных колебаний и по этой причине можно утверждать, что в реальных цепях всегда должно выполняться условие:

4. Интегралы свертки (наложения)

Рассмотрим порядок определения реакции линейной электрической цепи на сложное воздействие, если известна импульсная характеристика этой цепи . Будем считать, что воздействие представляет собой кусочно-непрерывную функцию , показанную на рисунке 7.

Пусть требуется найти значение реакции в некоторый момент времени . Решая эту задачу, представим воздействие в виде суммы прямоугольных импульсов бесконечно малой длительности, один из которых, соответствующий моменту времени , показан на рисунке 7. Этот импульс характеризуется длительностью и высотой .

Из ранее рассмотренного материала известно, что реакцию цепи на короткий импульс можно считать равной произведению импульсной характеристики цепи на площадь импульсного воздействия. Следовательно, бесконечно малая составляющая реакции, обусловленная этим импульсным воздействием, в момент времени будет равной:

поскольку площадь импульса равна , а от момента его приложения до момента наблюдения проходит время .

Используя принцип наложения, полную реакцию цепи можно определить как сумму бесконечно большого числа бесконечно малых составляющих , вызванных последовательностью бесконечно малых по площади импульсных воздействий, предшествующих моменту времени .

Таким образом:

.

Эта формула верна для любых значений , поэтому обычно переменную обозначают просто . Тогда:

.

Полученное соотношение называют интегралом свертки или интегралом наложения. Функцию , которая находится в результате вычисления интеграла свертки, называют сверткой и .

Можно найти другую форму интеграла свертки, если в полученном выражении для осуществить замену переменных:

.

Пример: найти напряжение на емкости последовательной -цепи (рис. 8), если на входе действует экспоненциальный импульс вида:

Воспользуемся интегралом свертки:

.

Выражение для было получено ранее.

Следовательно, , и .

Такой же результат можно получить, применив интеграл Дюамеля.

Литература:

Белецкий А. Ф. Теория линейных электрических цепей. – М.: Радио и связь, 1986. (Учебник)

Бакалов В. П. и др. Теория электрических цепей. – М.: Радио и связь, 1998. (Учебник);

Качанов Н. С. и др. Линейные радиотехнические устройства. М.: Воен. издат., 1974. (Учебник);

Попов В. П. Основы теории цепей – М.: Высшая школа, 2000.(Учебник)

Импульсная (весовая) характеристика или импульсная функция цепи – это ее обобщенная характеристика, являющаяся временной функцией, численно равная реакции цепи на единичное импульсное воздействие на ее входе при нулевых начальных условиях (рис. 13.14); другими словами, это отклик цепи, свободной от начального запаса энергии на дельта-функцию Дирана
на ее входе.

Функцию
можно определить, рассчитав переходную
или передаточную
функцию цепи.

Расчет функции
с использованием переходной функции цепи. Пусть при входном воздействии
реакцией линейной электрической цепи является
. Тогда в силу линейности цепи при входном воздействии, равном производной
, реакция цепи будет равна производной
.

Как отмечалось, при
, реакция цепи
, а если
, то реакция цепи будет
, т.е. импульсная функция

Согласно свойству выборки
произведение
. Таким образом, импульсная функция цепи

. (13.8)

Если
, то импульсная функция имеет вид

. (13.9)

Следовательно, размерность импульсной характеристики равна размерности переходной характеристики, поделенной на время.

Расчет функции
с использованием передаточной функции цепи. Согласно выражению (13.6), при воздействии на вход функции
, откликом функции будет переходная функция
вида:

.

С другой стороны, известно, что изображение производной функции по времени
, при
, равно произведению
.

Откуда
,

или
, (13.10)

т.е. импульсная характеристика
цепи равна обратному преобразованию Лапласа ее передаточной
функции.

Пример. Найдем импульсную функцию цепи, схемы замещения которой представлены на рис. 13.12, а ; 13.13.

Решение

Переходная и передаточная функции этой цепи били получены ранее:

Тогда, согласно выражению (13.8)

где
.


График импульсной характеристики
цепи представлен на рис. 13.15.

Выводы

Импульсная характеристика
введена по тем же двум причинам, что и переходная характеристика
.

1. Единичное импульсное воздействие
– скачкообразное и потому довольно тяжелое для любой системы или цепи внешнее воздействие. Следовательно, важно знать реакцию системы или цепи именно при таком воздействии, т.е. импульсную характеристику
.

2. При помощи некоторого видоизменения интеграла Дюамеля можно, зная
вычислить реакцию системы или цепи на любое внешнее возмущение (см. далее пп. 13.4, 13.5).

4. Интеграл наложения (дюамеля).

Пусть произвольный пассивный двухполюсник (рис. 13.16, а ) подключается к источнику непрерывно изменяющегося с момента
напряжения(рис. 13.16,б ).


Требуется найти ток (или напряжение) в любой ветви двухполюсника после замыкания ключа.

Задачу решим в два этапа. Сначала искомую величину найдем при включении двухполюсника на единичный скачок напряжения, который задается единичной ступенчатой функцией
.

Известно, что реакцией цепи на единичный скачок является переходная характеристика (функция)
.

Например, для
– цепи переходная функция по току
(см. п.2.1), для
– цепи переходная функция по напряжению
.

На втором этапе непрерывно изменяющееся напряжение
заменим ступенчатой функцией с элементарными прямоугольными скачками
(см. рис. 13.16б ). Тогда процесс изменения напряжения можно представить как включение при
постоянного напряжения
, а затем как включение элементарных постоянных напряжений
, смещенных относительно друг друга на интервалы времени
и имеющих знак плюс для возрастающей и минус для падающей ветви заданной кривой напряжения.

Составляющая искомого тока в момент от постоянного напряжения
равна:

.

Составляющая искомого тока от элементарного скачка напряжения
, включаемого в момент времениравна:

.

Здесь аргументом переходной функции является время
, поскольку элементарный скачок напряжения
начинает действовать на времяпозднее замыкания ключа или, иначе говоря, поскольку промежуток времени между моментомначала действия этого скачка и моментом времениравен
.

Элементарный скачок напряжения

,

где
– масштабный коэффициент.

Поэтому искомая составляющая тока

Элементарные скачки напряжения включаются на интервале времени от
до момента, для которого определяется искомый ток. Поэтому, суммируя составляющие тока от всех скачков, переходя к пределу при
, и учитывая составляющую тока от начального скачка напряжения
, получаем:

Последняя формула для определения тока при непрерывном изменении приложенного напряжения

(13.11)

называется интегралом наложения (суперпозиции) или интегралом Дюамеля (первой формой записи этого интеграла).

Аналогично решается задача при подключении цепи и источнику тока. Согласно этому интегралу реакция цепи, в общем виде,
в некоторый моментпосле начала воздействия
определяется всей той частью воздействия, которая имела место до момента времени.

Заменой переменных и интегрированием по частям можно получить другие формы записи интеграла Дюамеля, эквивалентные выражению (13.11):

Выбор формы записи интеграла Дюамеля определяется удобством расчета. Например, в случае, если
выражается экспоненциальной функцией, удобной оказывается формула (13.13) или (13.14), что обуславливается простотой дифференцирования экспоненциальной функции.

При
или
удобно применять форму записи, в которой слагаемое перед интегралом обращается в нуль.

Произвольное воздействие
может быть представлено также в виде суммы последовательно включаемых импульсов, как это изображено на рис. 13.17.


При бесконечно малой длительности импульсов
получим формулы интеграла Дюамеля, аналогичные (13.13) и (13.14).

Эти же формулы можно получить из соотношений (13.13) и (13.14), заменив а них производную функцию
импульсной функцией
.

Вывод.

Таким образом, на основе формул интеграла Дюамеля (13.11) – (13.16) и временных характеристик цепи
и
могут быть определены временные функции откликов цепи
на произвольные воздействия
.

Чтобы судить о возможностях электротехнических устройств, принимающих и передающих входные воздействия, прибегают к исследованию их переходных и импульсных характеристик.

Переходная характеристика h (t ) линейной цепи, не содержащей независимых источников, численно равна реакции цепи на воздействие единичного скачка тока или напряжения в виде единичной ступенчатой функции 1(t ) или 1(t t 0) при нулевых начальных условиях (рис. 14). Размерность переходной характеристики равна отношению размерности реакции к размерности воздействия. Она может быть безразмерной, иметь размерность Ом, Сименс (См).

Рис. 14

Импульсная характеристика k (t ) линейной цепи, не содержащей независимых источников, численно равна реакции цепи на воздействие единичного импульса в виде d(t ) или d(t t 0) функции при нулевых начальных условиях. Ее размерность равна отношению размерности реакции к произведению размерности воздействия на время, поэтому она может иметь размерности с –1 , Омс –1 , Смс –1 .

Импульсную функцию d(t ) можно рассматривать как производную единичной ступенчатой функции d(t ) = d 1(t )/dt . Соответственно, импульсная характеристика всегда является производной по времени от переходной характеристики: k (t ) = h (0 +)d(t ) + dh (t )/dt . Эту связь используют для определения импульсной характеристики. Например, если для некоторой цепи h (t ) = 0,7e –100t , то k (t ) = 0,7d(t ) – 70e –100 t . Переходную характеристику можно определить классическим или операторным методом расчета переходных процессов.

Между временными и частотными характеристиками цепи существует связь. Зная операторную передаточную функцию, можно найти изображение реакции цепи: Y (s ) = W (s )X (s ), т.е. передаточная функция содержит полную информацию о свойствах цепи как системы передачи сигналов от ее входа к выходу при нулевых начальных условиях. При этом характер воздействия и реакции соответствуют тем, для которых определена передаточная функция.

Передаточная функция для линейных цепей не зависит от вида входного воздействия, поэтому она может быть получена из переходной характеристики. Так, при действии на входе единичной ступенчатой функции 1(t ) передаточная функция с учетом того, что 1(t ) = 1/s , равна

W (s ) = L [h (t )] / L = L [h (t )] / (1/s ), где L [f (t )] - обозначение прямого преобразования Лапласа над функцией f (t ). Переходная характеристика может быть определена через передаточную функцию с помощью обратного преобразования Лапласа, т.е. h (t ) = L –1 [W (s )(1/s )], где L –1 [F (s )] - обозначение обратного преобразования Лапласа над функцией F (s ). Таким образом, переходная характеристика h (t ) представляет собой функцию, изображение которой равно W (s ) /s .

При действии на вход цепи единичной импульсной функции d(t ) передаточная функция W (s ) = L [k (t )] / L = L [k (t )] / 1 = L [k (t )]. Таким образом, импульсная характеристика цепи k (t ) является оригиналом передаточной функции. По известной операторной функции цепи с помощью обратного преобразования Лапласа можно определить импульсную характеристику: k (t ) W (s ). Это означает, что импульсная характеристика цепи единственным образом определяет частотные характеристики цепи и наоборот, так как

W (j w) = W (s ) s = j w . Поскольку по известной импульсной характеристике можно найти переходную характеристику цепи (и наоборот), то последняя тоже однозначно определяется частотными характеристиками цепи.

Пример 8. Рассчитать переходную и импульсную характеристики цепи (рис. 15) для входного тока и выходного напряжения при заданных параметрах элементов: R = 50 Ом, L 1 = L 2 = L = 125 мГн,
С = 80 мкФ.

Рис. 15

Решение. Примéним классический метод расчета. Характеристическое уравнение Z вх = R + pL +
+ 1 / (pC ) = 0 при заданных параметрах элементов имеет комплексно-сопряженные корни: p 1,2 =
= – d j w A 2 = – 100 j 200, что определяет колебательный характер переходного процесса. В этом случае законы изменения токов и напряжений и их производных в общем виде записывают так:

y (t ) = (M сosw A 2 t + N sinw A 2 t )e – d t + y вын; dy (t ) / dt =

=[(–M d + N w A 2) сos w A 2 t – (M w A 2 + N d)sinw A 2 t ]e – d t + dy вын / dt , где w A 2 - частота свободных колебаний; y вын - вынужденная составляющая переходного процесса.

Вначале найдем решение для u C (t ) и i C (t ) = C du C (t ) / dt , воспользовавшись вышеприведенными уравнениями, а затем по уравнениям Кирхгофа определим необходимые напряжения, токи и, соответственно, переходные и импульсные характеристики.

Для определения постоянных интегрирования необходимы начальные и вынужденные значения указанных функций. Их начальные значения известны: u C (0 +) = 0 (из определения h (t ) и k (t )), так как i C (t ) = i L (t ) = i (t ), то i C (0 +) = i L (0 +) = 0. Вынужденные значения определим из уравнения, составленного согласно второму закону Кирхгофа для t 0 + : u 1 = R i (t ) + (L 1 + L 2) i (t ) / dt + u C (t ), u 1 = 1(t ) = 1 = сonst,

отсюда u C () = u C вын = 1, i C () = i C вын = i () = 0.

Составим уравнения для определения постоянных интегрирования M , N :

u C (0 +) = M + u C вын (0 +), i C (0 +) = С (–M d + N w A 2) + i C вын (0 +); или: 0 = M + 1; 0 = –M 100 + N 200; отсюда: M = –1, N = –0,5. Полученные значения позволяют записать решения u C (t ) и i C (t ) = i (t ): u C (t ) = [–сos200t – -0,5sin200t )e –100t + 1] B, i C (t ) = i (t ) = e –100 t ] = 0,02
sin200t )e –100 t A. Согласно второму закону Кирхгофа,

u 2 (t ) = u C (t ) + u L 2 (t ), u L 2 (t ) = u L (t ) = Ldi (t ) / dt = (0,5сos200t – 0,25sin200t ) e –100t B. Тогда u 2 (t ) =

=(–0,5сos200t – 0,75sin200t ) e –100t + 1 = [–0,901sin(200t + 33,69) e –100t + 1] B.

Проверим правильность полученного результата по начальному значению: с одной стороны, u 2 (0 +) = –0,901 sin (33,69) + 1 = 0,5, а с другой стороны, u 2 (0 +) = u С (0 +) + u L (0 +) = 0 + 0,5 - значения совпадают.



Статьи по теме