Эффективность работы солнечных панелей разных типов и способы ее повышения. Что влияет на КПД и эффективность работы солнечных батарей

Ежедневно на нашу планету поступают миллиарды киловатт солнечной энергии. Люди уже давно начали использовать эту энергию для своих нужд. С течением прогресса для преобразования энергии солнечного света стали использовать солнечные батареи. Но эффективны ли эти приборы? Сколько составляет КПД солнечных батарей, и от чего он зависит? Каков их срок окупаемости и как можно вычислить рентабельность использования солнечных батарей? Эти вопросы волнуют каждого, кто планирует или уже решил приобрести солнечные панели, поэтому этой актуальной теме посвящена настоящая статья.

Давайте вкратце разберем, на чем основан принцип действия солнечных панелей. В основе лежит физическое свойство полупроводников. Вследствие выбивания фотонами света электронов с внешней орбиты атомов, образуется достаточно большое количество свободных электронов. После замыкания цепи и возникает электрический ток. Но, как правило, одного-двух фотоэлементов для получения достаточной мощности не хватает, поэтому, в состав солнечных модулей чаще всего входит несколько солнечных батарей. Чем больше фотоэлементов соединяют вместе, то есть чем больше площадь солнечных панелей, тем больше и производимая ими мощность. Помимо площади панелей ощутимое влияние на производимую мощность оказывают интенсивность солнечного света и угол падения лучей.

Разбираем понятие КПД

Значение КПД панели получают путем деления мощности электрической энергии на мощность солнечного света, падающего на панель. На сегодняшний день среднее значение этого показателя на практике составляет 12-25%, в теории же эта цифра приближается к 80-85%. В чем же причина такой большой разницы? В первую очередь, это зависит от используемых для изготовления солнечных панелей материалов. Как уже известно, основной элемент, входящий в состав панелей, это кремний. Один из главных недостатков этого вещества – способность поглощать лишь инфракрасное излучение, то есть энергия ультрафиолетовых лучей тратится впустую. Поэтому одно из основных направлений, в котором работают ученые, пытающиеся увеличить КПД солнечных панелей – это разработка многослойных модулей.

Многослойные батареи представляют собой конструкцию, состоящую из слоев различных материалов. Их подбирают в расчете на кванты разной энергии. То есть один слой поглощает энергию зеленого цвета, второй – синего, третий – красного. В теории различные комбинации этих слоев могут дать значение КПД 87%. Но это, к сожалению, лишь теория. Как показывает практика, изготовление подобных конструкций в производственных масштабах очень трудоемкое занятие, да и стоимость таких модулей очень высока.

На КПД солнечных модулей влияет и вид используемого кремния. Панели, изготовленные из монокристаллического кремния, имеют более высокий коэффициент полезного действия, нежели панели из поликристаллического кремния. Но и цена монокристаллических батарей выше.

Основное правило: при более высоком КПД для генерации электроэнергии заданной мощности потребуется модуль меньшей площади, то есть в состав солнечной панели будет включено меньшее количество фотоэлементов.

Как быстро окупятся солнечные батареи?

Стоимость солнечных батарей сегодня достаточно высока. А с учетом небольшого значения КПД панелей, вопрос их окупаемости очень актуален. Срок службы батарей, работающих от солнечной энергии, составляет порядка 25 и более лет. О том, чем обусловлен столь долгий срок эксплуатации, мы поговорим чуть позже, а пока выясним озвученный выше вопрос.

На срок окупаемости влияют:

  • Тип выбранного оборудования. Однослойные фотоэлементы имеют более низкий КПД в сравнении с многослойными, но и гораздо меньшую цену.
  • Географическое положение, то есть чем больше солнечного света в Вашей местности, тем быстрее окупится установленный модуль.
  • Стоимость оборудования. Чем больше средств Вы потратили на приобретение и монтаж элементов, входящих в состав солнечной системы энергосбережения, тем длиннее срок окупаемости.
  • Стоимость энергоресурсов в Вашем регионе.

Средние цифры срока окупаемости для стран Южной Европы составляют 1,5-2 года, для стран Средней Европы – 2,5-3,5 года, а в России срок окупаемости равен примерно 2-5 годам. В ближайшем будущем эффективность солнечных батарей значительно увеличится, связано это с разработкой более совершенных технологий, позволяющих увеличивать КПД и снижать себестоимость панелей. А как следствие уменьшится и срок, в течение которого система энергосбережения на солнечной энергии окупит себя.

Сколько прослужат солнечные батареи?

В состав солнечных панелей не входят механические подвижные части, поэтому они достаточно надежны и долговечны. Как уже упоминалось выше, срок их службы составляет более 25 лет. При правильной эксплуатации они могут прослужить и 50 лет. Большим плюсом является то, что столь долгий срок службы обходится без крупных поломок, достаточно лишь систематически очищать зеркала фотоэлементов от пыли и других загрязнений. Это необходимо для лучшего поглощения энергии, а, следовательно, и для более высокого показателя КПД.

Долгий период службы является одним из главных критериев при принятии решения «приобретать или нет солнечные батареи». После того как батареи окупят сами себя, получаемая Вами электрическая энергия, будет абсолютно бесплатной. Даже если период окупаемости будет максимальным (порядка 6 лет), Вы как минимум 20-25 лет не будете платить за энергоресурсы.

Последние разработки, увеличивающие показатель КПД

Чуть ли не каждый день ученые по всему миру заявляют о разработке нового метода, позволяющего увеличить коэффициент полезного действия солнечных модулей. Познакомимся с самыми интересными из них. В прошлом году компания Sharp представила общественности солнечный элемент, эффективность которого составила 43,5%. Этой цифры они смогли добиться с помощью установки линзы для фокусировки энергии непосредственно в элементе.

Не отстают от компании Sharp и немецкие физики. В июне 2013 года они представили свой фотоэлемент площадью всего в 5,2 кв. мм, состоящий из 4-х слоев полупроводниковых элементов. Такая технология позволила добиться КПД в 44,7%. Максимальная эффективность в данном случае также достигается за счет помещения вогнутого зеркала в фокус.

В октябре 2013 года были опубликованы результаты работ ученых из Стэнфорда. Они разработали новый жаропрочный композит, способный увеличить производительность фотоэлементов. Теоретическое значение КПД составляет около 80%. Как мы писали выше, полупроводники, в состав которых входит кремний, способны поглощать лишь ИК-излучение. Так вот действие нового композитного материала направлено на перевод высокочастотного излучения в инфракрасное.

Следующими стали английский ученые. Они разработали технологию, способную увеличить эффективность элементов на 22%. Они предложили на гладкой поверхности тонкопленочных панелей разместить наношипы из алюминия. Этот металл был выбран по причине того, что солнечный свет им не поглощается, а, наоборот, рассеивается. Следовательно, увеличивается количество поглощаемой солнечной энергии. Отсюда и рост производительности солнечной батареи.

Здесь приведены лишь основные разработки, но дело ими не ограничивается. Ученые борются за каждую десятую долю процента, и пока им это удается. Будем надеяться, что в ближайшем будущем показатели эффективности солнечных батарей будут на должном уровне. Ведь тогда и выгода от использования панелей будет максимальной.

Статью подготовила Абдуллина Регина

В Москве уже применяют новые технологии освещения улиц и парков, я думаю, там экономическая эффективность была просчитана:

Сейчас вы узнаете то, о чем никогда не расскажут продавцы солнечных панелей.

Ровно год назад, в октябре 2015 года, в качестве эксперимента я решил записаться в ряды «зеленых», спасающих нашу планету от преждевременной гибели, и приобрел солнечные панели максимальной мощностью 200 ватт и грид-инвертор рассчитанный максимум на 300 (500) ватт вырабатываемой мощности. На фотографии вы можете увидеть структуру поликристаллической 200-ваттной панели, но через пару дней после покупки стало ясно, что в одиночной конфигурации у неё слишком низкое напряжение, недостаточное для правильной работы моего грид-инвертора.

Поэтому мне пришлось её поменять на две 100-ваттных монокристаллических панели. Теоретически они должны быть немного эффективнее, по факту же они просто дороже. Это панели высокого качества, российского бренда Sunways. За две панели я заплатил 14 800 рублей.

Вторая статья расходов - грид-инвертор китайского производства. Производитель никак себя не обозначил, но устройство сделано качественно, а вскрытие показало, что внутренние компоненты рассчитаны на мощность до 500 ватт (вместо 300, написанных на корпусе). Стоит такой грид всего 5 000 рублей. Грид - это гениальное устройство. С одной стороны к нему подключается + и - от солнечных панелей, а с другой стороны он с помощью обычной электрической вилки подключается совершенно в любую электрическую розетку в вашем доме. В процессе работы грид подстраивается под частоту в сети и начинает "выкачивать" переменный ток (сконвертированный из постоянного) в вашу домашную сеть 220 вольт.

Грид работает только при наличии напряжения в сети и его нельзя рассматривать как резервный источник питания. Это его единственный минус. А колоссальным плюсом грид инвертора является то, что вам в принципе не нужны аккумуляторы. Ведь именно аккумуляторы являются самым слабым звеном в альтернативной энергетике. Если та же солнечная панель гарантированно отработает более 25 лет (то есть через 25 лет она потеряет примерно 20% своей производительности), то срок службы обыкновенного свинцового аккумулятора в аналогичных условиях составит 3-4 года. Гелевые и AGM аккумуляторы прослужат дольше, до 10 лет, но они и стоят в 5 раз дороже обычных аккумуляторов.

Поскольку у меня есть сетевое электричество, то мне никакие аккумуляторы не нужны. Если же делать систему автономной, то нужно добавить к бюджету еще 15-20 тысяч рублей на аккумулятор и контроллер к нему.

Теперь, что касается выработки электроэнергии. Вся энергия вырабатываемая солнечными панелями в реальном времени попадает в сеть. Если в доме есть потребители этой энергии, то она вся будет израсходована, а счетчик на вводе в дом «крутиться» не будет. Если же моментальная выработка электроэнергии превысит потребляемую в данный момент, то вся энергия будет передана обратно в сеть. То есть счетчик будет «крутиться» в обратную сторону. Но тут есть нюансы.

Во-первых, многие современные электронные счетчики считают проходящий через них ток без учета его направления (то есть вы будете платить за отдаваемую обратно в сеть электроэнергию). А во-вторых, российское законодательство не разрешает частным лицам продавать электроэнергию. Такое разрешено в Европе и именно поэтому там каждый второй дом обвешан солнечными панелями, что в совокупности с высокими сетевыми тарифами позволяет действительно экономить.

Что делать в России? Не ставить солнечные панели, которые могут выработать энергии больше, чем текущее дневное энергопотребление в доме. Именно по этой причине у меня всего две панели суммарной мощностью 200 ватт, которые с учетом потерь инвертора могут отдать в сеть примерно 160-170 ватт. А мой дом стабильно круглосуточно потребляет примерно 130-150 ватт в час. То есть вся выработанная солнечными панелями энергия будет гарантированно потреблена внутри дома.

Для контроля вырабатываемой и потребляемой энергии я пользуюсь Smappee. Я уже писал про него в прошлом году. У него два трансформатора тока, которые позволяют вести учет как сетевой, так и вырабатываемой солнечными панелями электроэнергии.

Начнём с теории, и перейдем к практике.

В интернете есть много калькуляторов солнечных электростанций. Из моих исходных данных согласно калькулятору следует, что среднегодовая выработка электроэнергии моих солнечных панелей составит 0,66 квтч/сутки, а суммарная выработка за год - 239,9 квтч.

Это данные для идеальных погодных условий и без учета потерь на конвертацию постоянного тока в переменный (вы же не собираетесь переделывать электроснабжение своего домохозяйства на постоянное напряжение?). В реальности полученную цифру можно смело делить на два.

Сравниваем с реальными данными по выработке за год:

2015 год - 5,84 квтч
Октябрь - 2,96 квтч (с 10 октября)
Ноябрь - 1,5 квтч
Декабрь - 1,38 квтч
2016 год - 111,7 квтч
Январь - 0,75 квтч
Февраль - 5,28 квтч
Март - 8,61 квтч
Апрель - 14 квтч
Май - 19,74 квтч
Июнь - 19,4 квтч
Июль - 17,1 квтч
Август - 17,53 квтч
Сентябрь - 7,52 квтч
Октябрь - 1,81 квтч (до 10 октября)

Всего: 117,5 квтч

Вот график выработки и потребления электроэнергии в загородном доме за последние 6 месяцев (апрель-октябрь 2016 года). Именно за апрель-август солнечными панелями была выработана львиная доля (более 70%) электрической энергии. В остальные месяцы года выработка была невозможна по большей части из-за облачности и снега. Ну и не забываем, что КПД грида по конвертации постоянного тока в переменный примерно 60-65%.

Солнечные панели установлены практически в идеальных условиях. Направление строго на юг, поблизости нет высоких домов отбрасывающих тень, угол установки относительно горизонта - ровно 45 градусов. Этот угол даст максимальную среднегодовую выработку электроэнергии. Конечно можно было купить поворотный механизм с электроприводом и функцией слежения за солнцем, но это бы увеличило бюджет всей установки практически в 2 раза, тем самым отодвинув срок её окупаемости в бесконечность.

По выработке солнечной энергии в солнечные дни у меня нет никаких вопросов. Она полностью соответствует расчетным. И даже снижение выработки зимой, когда солнце не поднимается высоко над горизонтом не было бы настолько критично, если бы не... облачность. Именно облачность является главным врагом фотовольтаики. Вот вам почасовая выработка за два дня: 5 и 6 октября 2016 года. Пятого октября светило солнце, а 6 октября небо затянули свинцовые тучи. Солнце, ау! Ты где спряталось?

Зимой есть еще одна небольшая проблема - снег. Решить её можно только одним способом, установить панели практически вертикально. Либо каждый день вручную очищать их от снега. Но снег это ерунда, главное чтобы светило солнце. Пусть даже низко над горизонтом.

Итак, подсчитаем расходы:

Грид инвертор (300-500 ватт) - 5 000 рублей
Монокристаллическая солнечная панель (Grade A - высшего качества) 2 шт по 100 ватт - 14 800 рублей
Провода для подключения солнечных панелей (сечением 6 мм2) - 700 рублей
Итого: 20 500 рублей.
За прошедший отчетный период было выработано 117,5 квтч, по текущему дневному тарифу (5,53 руб/квтч) это составит 650 рублей.
Если предположить, что стоимость сетевых тарифов не изменится (на самом деле они изменяются в большую сторону 2 раза в год), то свои вложения в альтернативную энергетику я смогу вернуть только через 32 года!

А уж если добавить аккумуляторы, то вся эта система никогда себя не окупит. Поэтому солнечная энергетика при наличии сетевого электричества может быть выгодна только в одном случае - когда у нас электроэнергия будет стоить как в Европе. Вот будет стоить 1 квтч сетевого электричества более 25 рублей, вот тогда солнечные панели будут очень выгодны.
Пока же использовать солнечные панели выгодно только там, где нет сетевого электричества, а его проведение стоит слишком дорого. Предположим, что у вас его загородный дом, расположенный в 3-5 км от ближайшей электрической линии. Причем она высоковольтная (то есть потребуется установка трансформатора), а у вас нет соседей (не с кем разделить расходы). То есть за подключение к сети вам придется заплатить условно 500 000 рублей, а после этого еще и платить по сетевым тарифам. Вот в этом случае вам будет выгоднее купить на эту сумму солнечные панели, контроллер и аккумуляторы - ведь после ввода системы в эксплуатацию вам уже больше платить не нужно будет.
А пока стоит рассматривать фотовольтаику исключительно, как хобби.

Идея использовать солнечную энергию для отопления дома или на другие нужды - не нова, разработаны устройства, которые позволяют это сделать любому человеку. Во многих странах, солнечные батареи на крыше скорее правило, чем исключение. Наша страна, к ним пока не относится, но и у нас уже подобные установки можно увидеть все чаще. Солнечные системы для дома могут быть двух видов. Первый - солнечные коллекторы, которые нагревают протекающий в них теплоноситель. Второй - солнечные батареи, которые вырабатывают электричество. О них и будем говорить ниже.

Солнечные батареи преобразуют солнечный свет в электрическую энергию. Батарея состоит из некоторого количества фотоэлектрических преобразователей, которые чаще называют фотоэлементами. Количество преобразователей в батарее произвольное, соединение последовательно-параллельное. Чем определяется количество фотоэлементов? Необходимой силой тока и напряжением. Располагают преобразователи на какой-либо плоской поверхности один возле другого. Из-за внешнего вида такие конструкции часто называют «солнечные панели».

Солнечные батареи для частного дома в некоторых странах — обычное явление

Слишком большие по площади солнечные батареи в быту использовать неудобно, а если не хватает мощности самой большой, несколько устройств соединяют в каскад. Если мощность требуется большая, может понадобиться значительная площадь: может быть занята вся крыша, иногда стены дома и часть придомовой территории. Потому чаще применяют солнечные батареи для частного дома: там есть где разместить и большое их количество. Владельцы квартир могут занять только окна и балконы.

Возможности использования

Как можно использовать солнечные батареи для отопления дома? Только для уменьшения счетов за электроэнергию, а также в качестве резервного источника на случай отключения. Это поможет добиться той самой энергонезависимости, и не заморозить систему отопления при отсутствии централизованного электропитания.

Насколько реально солнечная батарея может обеспечит потребности в электричестве? Если говорить о водяном отоплении, то это реально: для поддержания работоспособности системы потребуется максимум 200-300 Вт/ч. Столько в среднем «тянут» электроника котла + циркуляционный насос + возможные управляющие устройства и контролеры. Если система у вас больше, возьмите паспорта и посчитайте необходимую мощность. Для 300 Вт/ч будет достаточно двух солнечных панелей средней мощности (их суммарная производительность должна немного превышать потребность).

И не нужно думать, что при отсутствии солнца электричества не будет. В систему входят обязательно аккумуляторы и инвертор. Правильно подберите мощность аккумуляторов, и их заряда даже при самых плохих погодных условиях вам хватит на несколько дней работы системы.

Кстати, многие европейские производители отопительного оборудования предусматривают совместную работу своей техники с солнечными преобразователями (например, газовые котлы и ). Но работают они с гелиоколлекторами (греют воду) или с солнечными батареями, нужно смотреть по каждому виду оборудования.

Если , все серьезнее. Мощность большинства таких обогревателей исчисляется киловаттами. Для выработки такого количества энергии потребуется много панелей для переработки энергии солнца. Устройство системы солнечных батарей для отопления частного дома электрическими полами, может вылиться в очень приличную сумму. Но система хороша тем, что ее мощность можно наращивать постепенно. Будете по возможности увеличивать количество панелей и количество вырабатываемого электричества.

При желании можно сэкономить: . Такие самодельные варианты обойдутся в разы дешевле заводских. И это притом, что покупать фотопреобразователи придется готовые: их изготовление в кустарных условиях - нереальная задача. Поэтому - только готовые. Эффективность самодельных солнечных панелей будет ниже заводских, но и цена в разы ниже.

Расчет солнечных батарей для дома

Инсоляция (количество солнечной энергии) в разные месяцы сильно изменяется. Потому сначала нужно определиться с тем, какую часть электроэнергии и на какой период вы собираетесь вырабатывать. Если вы хотите все 100% в любое время года вырабатывать самостоятельно, считать придется по самому плохому месяцу с минимальным количеством солнечных дней. Но тогда возникнет вопрос: что делать с избыточным количеством электроэнергии, которая будет вырабатываться в другие месяца. Если проживание планируется только в огородный сезон, считаете по самой низкой инсоляции в этот период. В общем, принцип понятен.

Затем необходимо рассчитать какую суммарную мощность должна выдавать ваша солнечная система для дома. Для этого в таблицу вписываете все электроприборы, и из их паспортов вносите данные по мощности, потребляемому току и ваттную нагрузку. Подбив колонки, узнаете, сколько электроэнергии в час нужно всей вашей аппаратура и приборам. Понятно, что все они вряд ли включаются одновременно. Можете попытаться высчитать, какие из них работают одновременно, и по этой цифре подбирать солнечные панели.

Как считать количество солнечных батарей разберем на примере. Пусть потребность в электроэнергии 10 кВт/ч, инсоляция в расчетном месяце 2 кВт/ч. Мощность батареи, которую собрались покупать, 250 Вт (0,25 кВт). Теперь считаем 10 / 2 / 0,25 = 20 шт. То есть понадобится 20 солнечных панелей.

Для уменьшения потребления электроэнергии нужно заменить все лампы накаливания на светодиодные, а всю старую неэкономную технику на энергосберегающую - тогда вам понадобится не такое уже и большое количество солнечных панелей.

Виды солнечных батарей

Фотоэлектрические преобразователи существуют разные. Причем отличается и материал, из которого они изготавливаются, и технологии. От всех этих факторов напрямую зависит производительность этих преобразователей. Некоторые фотоэлементы имеют КПД 5-7 %, а самые удачные последние разработки показывают 44 % и выше. Понятно, что от разработок до бытового использования расстояние огромное, и по времени, и по деньгам. Зато можно представить, что ждет нас в ближайшем будущем. Для получения лучших характеристик используют другие редкоземельные металлы, но с улучшением характеристик имеем приличное повышение цены. Средняя же производительность относительно недорогих солнечных преобразователей составляет 20-25 %.

Самые распространенные кремниевые солнечные батареи. Этот полупроводник недорог, его производство освоено давно. Но они имеют не самый высокий КПД - те самые 20-25%. Потому при всем разнообразии сегодня преимущественно используются три вида солнечных преобразователей:

  • Самые дешевые - тонкопленочные батареи. Они представляют собой тонкий налет кремния на несущем материале. Кремниевый слой покрыт защитной пленкой. Плюс этих элементов в том, что работают они даже в рассеянном свете, а, следовательно, есть возможность устанавливать их даже на стены зданий. Минусы - низкая эффективность 7-10%, а также, несмотря на защитный слой, постепенная деградация кремниевого слоя. Тем не менее заняв большую площадь, можно получить электричество даже в пасмурную погоду.
  • Поликристаллические солнечные батареи изготавливают из расплава кремния, медленно его охлаждая. Отличить эти элементы можно по ярко-синему цвету. Эти солнечные батареи имеют лучшую продуктивность: КПД 17-20%, но в рассеянном свете малоэффективны.
  • Самые дорогие из всей троицы, но при этом довольно широко распространенные - монокристаллические солнечные батареи. Они получаются путем разделения одного кристалла кремния на пластины и имеют характерную геометрию со скощенными углами. У этих элементов КПД от 20% до 25%.

Теперь, видя надписи «солнечная панель моно» или «поликристаллическая солнечная батарея», вы будете понимать, что речь идет о способе производства кремниевых кристаллов. Также вы будете знать, какой эффективности от них можно ожидать.

Батарея с монокристаллическими преобразователями

Эффективность солнечных батарей зимой

Вы, наверное, удивитесь, но зимним днем на вертикальную поверхность падает всего в 1,5-2 раза меньше энергии, чем летом. Это данные для средней полосы России. За сутки картина хуже: за этот период летом получаем в 4 раза больше энергии. Но обратите внимание: на вертикальную поверхность. То есть на стену. Если говорить о горизонтальной поверхности, тут разница уже в 15 раз.

Самая печальная картина по выработке электроэнергии солнечными батареями ожидает вас не зимой, а осенью: в пасмурную погоду их эффективность ниже в 20-40 раз, в зависимости от плотности облачного покрова. Зимой же, после того выпал снег, инсоляция (количество света, падающего на батареи) в солнечные дни может приближаться к летним значениям. Потому зимой солнечные системы для дома вырабатывают больше электроэнергии, чем осенью.

Получается, чтобы зимой добиться близкой к максимальной эффективности, нужно располагать солнечные батареи вертикально или почти вертикально. И, если их вешать на стены, то желательно на юго-восточные: утром по статистике чаще бывает ясная погода. Если юго-восточной стены нет, или ничего на ней установить невозможно, выйти из положения можно сделав специальные подставки. Тогда ставят солнечные батареи на крыше. Так как угол падения солнечных лучей в зависимости от сезона меняется, желательно сделать подставку с регулируемым углом наклона. Есть возможность — разверните солнечные панели «лицом» на юго-восток, нет такой возможности, пусть «смотрят» на юг.

Правила установки

Эффективность работы кремниевых солнечных батарей зависит от количества попадающей на них энергии солнца (всего спектра излучения). Факторы, на которые мы можем каким-то образом повлиять, это:


На работоспособность многих типов преобразователей влияют температурные показатели: диапазон использования кремниевых элементов от -40 o C до +50 o C. Негативно на работоспособности сказываются как более низкие, так и более высокие температуры. Если летом у вас солнце активное, важно не допустить перегрева. Для этого под панель можно положить белую ткань или фольгу (более эффективно). Если это не помогает и панель перегревается, поверните ее, или перевесьте. Нужно будет выбрать такое положение, при котором будет соблюдаться тепловой режим, а производительность останется довольно высокой.

Максимальную свою продуктивность эти устройства показывают, если солнечные лучи падают под углом 90 o . К сожалению, такое возможно далеко не весь день, а лишь короткий промежуток времени. Есть специальные системы слежения, изменяющие угол наклона панели так, чтобы свет падал постоянно под желаемым углом, но это дорогие установки.

И все же, можно найти оптимальный угол установки солнечных батарей. Просто при незначительном отклонении от идеала (менее 50 o) производительность падает мало, примерно на 5 %. Фактическое подтверждение этому можете увидеть в видео.

Для каждого региона угол установки солнечных батарей свой. Его можно определить экспериментально (как - вы видели), а можно выставить исходя из географической широты - этот наклон принято считать самым лучшим. Многое зависит от ориентации панели: если вы развернули ее на север или восток, оптимальный угол будет меньше.

Солнечные батареи на крыше

Прежде всего, нужно выяснить, выдержит ли кровля дополнительную нагрузку. Один-два модуля выдержит любая, а для большего количества придется считать.

Для надежной фиксации они должны крепиться как минимум в четырех точках. Причем, если вы монтируете панели заводского изготовления, не поленитесь изучить инструкцию по установке: при нарушении хотя бы одного из пунктов, оборудование снимается с гарантии. В большинстве случаев требования такие:


Системы крепления солнечных панелей могут быть разными. Есть готовые (продаются там же, где и сами панели), но вполне можно использовать и сделанные собственноручно. Важно только использовать надежные, стойкие к коррозии материалы. Толщина реек и крепежа должна быть большой: выдерживать должны они и ветровые нагрузки, и массу панелей с самым толстым снежным покровом.

Один из методов крепления солнечных батарей на крыше частного дома можно увидеть в видео.

Теперь немного об электрической сборке. Схема подключения солнечной батареи, кроме самих преобразователей, предусматривает наличие:

  • контроллера заряда с подключенными аккумуляторными батареями;
  • преобразователя (инвертора), который преобразует постоянный ток в переменный;
  • предохранителей для защиты от короткого замыкания (повысят безопасность и вашу и системы).

Контроллер и преобразователь имеют ограничения по току и напряжению. Суммарные параметры подключаемой для вашего дома солнечной системы не должны их превышать. Для электрического соединения батарей в единую систему, использовать нужно только те провода, которые выведены наружу.

Для соединения панелей применяют медный проводник в стойкой к ультрафиолету изоляции. Если провода в подходящей изоляции не нашли, спрячьте его в гофрированный шланг для наружных работ. Толщина жил провода зависит от предполагаемой силы тока в системе и от длины линии, но минимальное сечение 4 мм 2 . Соединение проводников желательно делать при помощи коннекторов, а не на скрутках. Рекомендуют МС4 потому что проводники, выходящие из большинства солнечных батарей, оконечены именно такими разъемами. Эти разъемы хороши тем, что обеспечивают герметичное соединение, что на крышах немаловажно. Но не все фирмы устанавливают разъемы этого стандарта. В дешевых моделях (особенно китайских) может стоять что-либо иное, так что уточняйте при покупке.

Теперь о последовательности подключения оборудования в систему. Для безопасного подключения соблюдайте очередность такую:

  1. К контроллеру подключаются аккумуляторы с соблюдением полярности. Провода - медь, сечение выбирается в зависимости от мощности контроллера.
  2. К контроллеру подключаются солнечные батареи. Также необходимо соблюдать полярность.
  3. К контроллеру через предохранитель подключается 12 В потребители.
  4. К аккумуляторам подключается инвертор (через предохранитель), а к его выходу уже потребители 220 В. Подключение инвертора напрямую к контроллеру исключено: придется покупать новые устройства. А это приблизительно 600-1000$ в зависимости от фирмы и мощности.

Не пренебрегайте последовательностью подключения - это наиболее безопасный алгоритм, гарантирующий (при соблюдении полярности) рабочее состояние системы.

Напоследок, еще один вариант установки на крыше дачи с регулируемым углом наклона. Возможно, вам видео будет полезным.

Рекордсменом по КПД среди солнечных батарей, из числа так или иначе доступных на рынке сегодня, являются, разработанные Институтом гелиоэнергетических систем Общества имени Фраунгофера в Германии, солнечные батареи на базе многослойных фотоэлементов. Начиная с 2005 года, их коммерческим внедрением занимается компания Soitec.

Размер самих фотоэлементов не превышает 4 миллиметра, а фокусировка солнечного света на них достигается путем применения вспомогательных концентрирующих линз, благодаря которым насыщенный солнечный свет преобразуется в электричество с КПД достигающим 47%.

Батарея содержит четыре p-n перехода, чтобы четыре различные звена фотоэлемента могли эффективно принимать и преобразовывать излучение с конкретной длиной волны, из солнечного света, сконцентрированного в 297,3 раза, в диапазоне длин волн от инфракрасного до ультрафиолетового.

Исследователи под руководством Франка Димирота изначально поставили перед собой задачу вырастить многослойный кристалл, и решение было найдено, - они срастили подложки для выращивания, и в результате был получен кристалл с различными полупроводниковыми слоями, с четырьмя фотоэлектрическими подъячейками.

Многослойные фотоэлементы давно используются на космических аппаратах, но теперь на их основе запущены и солнечные станции уже в 18 странах. Это становится возможным благодаря совершенствованию и удешевлению технологии. В итоге, количество стран, снабженных новыми солнечными станциями, будет расти, и налицо тенденция к конкуренции на рынке промышленных солнечных батарей.

На втором месте - солнечные батареи на базе трехслойных фотоэлементов Sharp, КПД которых достиг 44,4%. Фосфид индия-галлия - первый слой фотоэлемента, арсенид галлия - второй, арсенид индия-галлия - третий слой. Три слоя разделены диэлектриком, который служит для достижения туннельного эффекта.

Концентрация света на фотоэлемент достигается благодаря линзе Френеля, как и у немецких разработчиков, - свет солнца концентрируется в 302 раза, и преобразуется трехслойным полупроводниковым фотоэлементом.

Научные исследования по развитию этой технологии непрерывно велись Sharp, начиная с 2003 года при поддержке NEDO - японской организации общественного управления, содействующей научным исследованиям и развитию, а также распространению промышленных, энергетических и экологических технологий. К 2013 году Sharp был достигнут рекорд в 44,4%.

За два года до Sharp, в 2011 году, американская компания Solar Junction уже выпустила аналогичные батареи, но с КПД 43,5%, элементы которых обладали размером 5 на 5 мм, и фокусировка также производилась линзами, концентрируя свет солнца в 400 раз. Фотоэлементы были трехпереходными на основе германия, и группа планировала даже создать пяти и шестипереходные фотоэлементы, чтобы лучше захватить спектр. Исследования ведутся компанией и по сей день.

Таким образом, максимально рекордным КПД обладают солнечные батареи, выполненные в сочетании с концентраторами, которые, как мы видим, производят и в Европе, и в Азии, и в Америке. Но эти батареи в основном изготавливаются для постройки наземных солнечных электростанций крупных масштабов и для эффективного электроснабжения космических аппаратов.

Недавно был поставлен рекорд в сфере обычных потребительских солнечных панелей, которые доступны большинству желающих снабдить ими, например, крышу дома.

В середине осени 2015 года компания Илона Маска «SolarCity» представила наиболее эффективные потребительские солнечные панели, КПД которых превышает 22%.

Этот показатель подтвердили замеры, проведенные лабораторией Renewable Energy Test Center. Завод в Баффало уже ставит план производства на каждый день - от 9 до 10 тысяч солнечных панелей, точные характеристики которых пока не сообщаются. Компания уже планирует снабжать своими батареями не менее 200000 домов ежегодно.

Дело в том, что оптимизированный технологический процесс позволил предприятию значительно снизить стоимость производства, при этом повысив КПД в 2 раза по сравнению с широко распространенными потребительскими кремниевыми солнечными панелями. Маск уверен, что именно его солнечные панели будут пользоваться наибольшей популярностью у домовладельцев в ближайшем будущем.

  • – не новое изобретение. Уже больше полувека человечество использует излучение солнца для снабжения электроэнергией самых разных приборов и устройств. Тем не менее, аккумуляторы такого типа до их пор не получили повсеместного распространения и не вытеснили с рынка другие энергоносители. Одна из причин этого – не всегда достаточная эффективность работы солнечных панелей.

    Солнечной панелью или батареей называют устройство, способное перерабатывать энергию, содержащуюся в солнечном излучении, в электричество.

    зависит от многих факторов:

    • материалы;
    • погодные условия;
    • тип батареи.

    Стандартной эффективностью солнечных панелей, широко используемых для личных нужд, считается величина примерно равная 20%. У некоторых типов устройств этот показатель будет выше, у некоторых - ниже. Но среднее значение таково. Эта величина показывает, какой процент от попавшего на аккумулятор света был переработан в электроэнергию.

    Конечно, это весьма приблизительное определение, но в целом верное. В лабораториях уже были созданы батареи с эффективностью в 50 и даже 100%. Но пока что это только опытные образцы.

    Кремниевые панели

    Идеальная эффективность работы солнечных панелей, в которых в качестве полупроводника используется чистый кремний, равна 34% от всего полученного света. При этом необходимо иметь ввиду, что в условиях недостаточной освещенности, при рассеянном свете батареи уловят меньше света, и количественный показатель этих 34% уменьшится.

    • кремниевые панели хорошо проявляют себя при ярком свете, но малоэффективны при рассеянном.
    • Поликристаллические обладают меньшим КПД, но хорошо проявляют себя в условиях недостаточной освещенности.
    • (тонкопленочные) панели также достаточно эффективны при рассеянном свете.

    Гибридные панели

    КПД кремниевых устройств сравнительно невысок, так как они могут получать энергию только в красной части спектра. Энергия же синего, самого энергетически насыщенного фотона, остается неиспользованной. Ученые во всем мире активно работают над решением этой задачи.

    Один из предложенных вариантов – использование ароматического углерода пентацена и химического соединения PbS. Это сочетание позволяет получать большее количество электронов и, как следствие, вырабатывать больше энергии.

    Самые эффективные солнечные панели - многослойные ячейки, в которых каждый слой выполняет свою задачу. Эффективность этих батарей может достигать 87%. Но в массовом производстве эти технологии пока не используются. С увеличением количества слоев увеличивается и стоимость аккумулятора. Для достижения 87% КПД придется сделать очень дорогую солнечную батарею.

    Весьма перспективны устройства, в основе которых есть минерал перовскит. Сейчас они менее эффективны, чем кремниевые, но это в большей степени связано с новизной технологии. Имеющиеся результаты испытаний позволяют предположить, что в будущем они способны занять первое место на рынке альтернативной энергетики.

    Эффективность солнечных батарей напрямую зависит от их расположения. Они должны быть обращены на юг рабочей поверхностью и наклонены под углом, равным широте той точки, на которой находятся. Панели нельзя ставить так, чтобы на них падала тень от соседнего здания, например.

    Проблема, с которой можно столкнуться зимой – снег, закрывающий рабочую поверхность. Вариантов решения здесь, в общем-то, немного: либо чистить вручную, либо менять угол наклона. Полезное устройство, способное увеличить КПД аккумуляторов – трекер, поворачивающий панель следом за солнцем.

    Важно следить за тем, чтобы система не сильно нагревалась, так как перегрев ослабляет фотоэффект. Этого можно избежать, установив вентилируемый аккумулятор. Пыль на рабочей поверхности также снижает количество выработанной энергии. Протирать систему нужно не реже, чем каждые два года.



    Статьи по теме