Двоично-кодированная десятичная система счисления (D-коды). Информатика - система счисления

(Методическая разработка)

Задание: Преобразовать числа, выраженные в десятичной форме, в двоичную форму, затем произвести умножение.

Примечание: Правила умножения точно такие же, как и в десятичной системе счисления.

Умножить: 5 × 5 = 25

Преобразуем десятичное число 5 в двоичный код

5: 2 = 2 остаток 1 Полученный результат

2: 2 = 1 остаток 0 записываем в обратном

1: 2 = 0 остаток 1 порядке

Таким образом: 5 (10) = 101 (2)

Преобразуем десятичное число 25 в двоичный код

25: 2 = 12 остаток 1

12: 2 = 6 остаток 0 Полученный результат

6: 2 = 3 остаток 0 записываем в обратном

3: 2 = 1 остаток 1 порядке

1: 2 = 0 остаток 1

Таким образом: 11001 (2) = 25 (10)

Производим проверку:

Производим двоичное умножение

×
101
+
101

Правила умножения в двоичной системе точно такие же, как и в десятичной системе счисления.

1) 1 × 1, будет 1, записываем 1.

2) 1 × 0, будет 0, записываем 0.

3) 1 × 1, будет 1, записываем 1.

4) Записываем три нуля, причем первый ноль под вторым знаком (нулем).

5) Умножение 1 × 101 точно такое же, как и п.п. 1, 2, 3.

Производим операцию сложения.

6) Сносим и записываем 1.

7) 0 +0 будет ноль, записываем 0.

8) 1 + 1 будет 10, записываем ноль, а единицу переносим в старший разряд.

9) 0 + 0 + 1 будет 1, записываем 1

10) Сносим и записываем 1.

Задание 1: Выполнить умножение в двоичной форме

Задание: Преобразовать числа, выражение в десятичной форме, в двоичную форму, затем произвести деление.

Примечание: Правила деления точно такие – же, как и в десятичной системе счисления.

Если результат делится без остатка, записываем – 0, иначе (с остатком) – 1

Разделить: 10:2 = 5

Преобразуем десятичное число 10 в двоичный код:

10:2 = 5 остаток 0 5:2 = 2 остаток 1 2:2 = 1 остаток 0 1:2 = 0 остаток 1

Полученный результат

записываем в обратном

Таким образом: 1010 (2) = 10 (10)

Преобразуем десятичное 2 в двоичный код

2:2 = 1 остаток 0

1:2 = 0 остаток 1



Таким образом: 10 (2) = 2 (10)

Преобразуем десятичное 5 в двоичное код

5:2 = 2 остаток 1

2:2 = 1 остаток 0

1:2 = 0 остаток 1

Таким образом: 101 (2) = 5 (10)

Производим проверку:

1010 (2) = 0×2 0 + 1×2 1 + 0×2 2 + 1×2 3 = 0 +2+0+8 =10 (10)

10 (2) = 0×2 0 +1×2 1 = 0 +2 = 2 (10)

101 (2) = 1×2 0 +0×2 1 +1×2 2 = 1+ 0+4 = 5 (10)

Производим двоичное деление:

1010 (2) : 10 (2) = 101 (2)

1010 (2) 10
10

Правила деления в двоичной системе точно такие же, как и в десятичной.

1) 10 разделить на 10. Берём по 1, в результат записываем 1.

2) Сносим 1 (единицу), не хватает, занимаем 0 (ноль).

3) Берём по 1. Из 10 (десяти) вычесть 10 получается ноль, что и соответствует
действительности.

Задание 1: Выполнить деление в двоичной форме

1) 10010 (2) : 110 (2) =

11000 (2) : 110 (2) =

2) 110110 (2) : 110 (2) =

Задание 2: Полученный результат восстановить в десятичной форме.

Задание: Вычесть числа, выраженные в двоичной форме, полученный результат восстановить в десятичную форму.

Вычесть: 1100 (2) – 110 (2) =

Правила вычитания в двоичной форме.

Вычитание в двоичной форме подобно вычитанию в десятичной системе.

110 0 + 0 = 0

110 0 + 1 = 1

1) 0 плюс 0 равно 0 (См. правила сложения чисел).

2) 1 плюс 1 равно 10. Записываем ноль, а единицу переносим в старший разряд, как и в десятичной системе

3) 1 плюс 1 плюс 1 равно 11 – двоичное число. Записываем 1, а вторую единицу
переносим в старший разряд. Получаем: 1100 (2) , что и соответствует действительности.

Задание: Произвести проверку полученного результата.

1100 (2) = 0×2 0 + 0×2 1 +1×2 2 +1×2 3 = 0 + 0 + 4 + 8 = 12 (10)

110 (2) = 0×2 0 +1×2 1 +1×2 2 = 0 + 2 + 4 = 6 (10)

Таким образом, получаем: 6 + 6 = 12, что соответствует действительности.

Выполнить самостоятельно:

Задание 1. Выполнить вычитание в двоичной форме:

+
1010 10 (10)

110 6 (10)

10000 соответствует: 16 (10)

Выполнение действий происходит следующим образом.

1) 0 плюс 0 равно О

2) 1 плюс 1 равно 10 (что 2 (два) в двоичной системе представляется как 10);
Исторически сложилось, что для сложения чисел использовалось десять пальцев и наоборот:

9 + 1 = 10; 8 + 2 = 10; 1 + 9 = 10; 2 + 8 = 10.

Поэтому и произошла десятичная система счисления. А в двоичной 2 (два) знака: 1 и 0

3) 1 плюс 0 плюс 1 равно 10. Записываем 0 и переносим 1.

4) 1 плюс 1 равно 10, поскольку это последнее действие, записываем 10, точно также сделали это в десятичной системе.

Задание: Произвести проверку полученного результата:

110

Иногда бывает удобно хранить числа в памяти процессора в десятичном виде (Например, для вывода на экран дисплея). Для записи таких чисел используются двоично-десятичные коды . Не нужно путать двоично-десятичный код с . Для записи одного десятичного разряда используется четыре двоичных бита. Эти четыре бита называются тетрадой. Иногда встречается название, пришедшее из англоязычной литературы: нибл. При помощи четырех бит можно закодировать шестнадцать цифр. Лишние комбинации в двоично-десятичном коде являются запрещенными. Таблица соответствия двоично-десятичного кода и десятичных цифр приведена ниже:

Двоично-десятичный код Десятичный код
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9

Остальные комбинации двоичного кода в тетраде являются запрещенными. Запишем пример двоично-десятичного кода:

1258 = 0001 0010 0101 1000

В первой тетраде записана цифра 1, во второй — 2, в третьей — 5, а в последней тетраде записана цифра 8. В данном примере для записи числа 1258 потребовалось четыре тетрады. Количество ячеек памяти микропроцессора зависит от его разрядности. При 16-разрядном процессоре все число уместится в одну ячейку памяти.

589 = 0000 0101 1000 1001

В данном примере для записи числа достаточно трех тетрад, но ячейка памяти 16-разрядная. Поэтому старшая тетрада заполняется нулями. Они не изменяют значение цифры. Если бы мы заполнили нулями младшую тетраду, то число увеличилось бы в десять раз!

При записи десятичных чисел часто требуется записывать знак числа и десятичную запятую (в англоязычных странах точку). Двоично-десятичный код часто применяется для набора телефонного номера или набора кодов телефонных служб. В этом случае кроме десятичных цифр часто применяются символы "*" или "#". Для записи этих символов в двоично-десятичном коде применяются запрещенные комбинации

Достаточно часто в памяти процессора для хранения одной десятичной цифры выделяется одна ячейка памяти (восьми, шестнадцати или тридцатидвухразрядная). Это делается для повышения скорости работы программы. Для того, чтобы отличить такой способ записи двоично-десятичного числа от стандартного, способ записи десятичного числа, как это показано в примере, называется упакованной формой двоично-десятичного числа. Запишем те же числа, что и в предыдущем примере в неупакованном двоично-десятичном коде для восьмиразрядного процессора:

1258 =00000001 00000010 00000101 00001000

В первой строке записана цифра 1, во второй - 2, в третьей - 5, а в последней строке записана цифра 8. В данном примере для записи числа 1258 потребовалось четыре строки (ячейки памяти)

589 = 00000000 00000101 00001000 00001001

Суммирование двоично-десятичных чисел.

Суммирование двоично-десяичных чисел можно производить по правилам обычной двоичной арифметики, а затем производить двоично-десятичную коррекцию . Двоично-десятичная коррекция заключается в проверке каждой тетрады на допустимые коды. Если в какой либо тетраде обнаруживается запрещенная комбинация, то это говорит о переполнении. В этом случае необходимо произвести двоично-десятичную коррекцию. Двоично-десятичная коррекция заключается в дополнительном суммировании числа шесть (число запрещенных комбинаций) с тетрадой, в которой произошло переполнение или произошёл перенос в старшую тетраду. Приведём два примера.

Двоично-десятичная система счисления. Десятичные цифры от 0 до 9 заменяются представляющими их двоичными тетрадами: 0=0000, 1=0001, 2=0010, 3=0011, 4=0100, 5=0101, 6=0110, 7=0111, 8=1000 и 9=1001. Такая запись очень часто используется как промежуточный этап перевода числа из десятичной системы в двоичную или обратно. Так как 10 не является точной степенью 2, то используются не все 16 тетрад, а алгоритмы арифметических операций над многозначными числами здесь более сложны, чем в основных системах счисления. И тем не менее, двоично-десятичная система счисления применяется даже на этом уровне во многих микрокалькуляторах и некоторых компьютерах (в частности, «Ямаха» стандарта MSX).

Поскольку человеку наиболее привычны представление и арифметика в десятичной системе счисления, а для компьютера - двоичное представление и двоичная арифметика, была введена компромиссная система двоично-десятичной записи чисел. Такая система чаще всего применяется там, где существует необходимость частого использования процедуры десятичного ввода-вывода. (электронные часы, калькуляторы, АОНы, и т.д.). В таких устройсвах не всегда целесообразно предусматривать универсальный микрокод перевода двоичных чисел в десятичные и обратно по причине небольшого объема программной памяти.

Принцип построения этой системы достаточно прост: каждая десятичная цифра преобразуется прямо в свой десятичный эквивалент из 4 бит, например: 369110=0011 0110 1001 0001DEC:

Десятичное число 3 6 9 1 Двоично-десятичное число 0011 0110 1001 0001

Преобразуем двоично-десятичное число 1000 0000 0111 0010 в его десятичный эквивалент. Каждая группа из 4 бит преобразуется в её десятичный эквивалент. Получим 1000 0000 0111 0010DEC = 807210:

Двоично-десятичное число 1000 0000 0111 0010 Десятичное число 8 0 7 2

Микропроцессоры используют чистые двоичные числа, однако понимают и команды преобразования в двоично-десятичную запись. Полученные двоично-десятичные числа легко представимы в десятичной записи, более понятной людям.

Преобразование двоичных чисел в двоично-десятичные

Арифметико-логическое устройство AVR-микроконтроллеров (как и других микропроцессоров) выполняет элементарные арифметические и логические операции над числами, представленными в двоичном коде. В двоичном коде считываются результаты преобразования АЦП, в двоичном коде (в формате целых чисел или чисел с плавающей точкой) удобно выполнять обработку результатов измерения. Однако, когда окончательный результат отображается на индикаторе, он должен быть преобразован в десятичный формат, удобный для восприятия человеком.

В данном разделе рассматриваются программы преобразования двоичных чисел в двоично-десятичные.

1. Форматы представления десятичных чисел

В настоящее время распространены два формата представления десятичных чисел в микропроцессорах - упакованный двоично-десятичный код (BCD-Binary-Coded Decimal) и неупакованный десятичный код .

Упакованный BCD-код - это такое представление десятичного числа, когда каждая десятичная цифра представляется 4-х битным двоичным позиционным кодом 8-4-2-1. При этом байт содержит две десятичные цифры. Младшая десятичная цифра занимает правую тетраду (биты 3: 0), старшая - левую тетраду (биты 7: 4). Многоразрядные BCD-числа занимают несколько смежных байт. Если число является знаковым, то для представления знака в BCD-формате отводится старшая тетрада старшего байта. Для кодирования знака можно использовать шесть двоичных кодовых комбинаций, которые не используются для представления десятичных цифр. Это коды 1010-1111 (A-F в шестнадцатеричном представлении). Обычно для кодирования знака плюс применяют код 1100 (С), а для знака минус - 1101 (D).

Неупакованный десятичный код является подмножеством международной таблицы кодирования символов ASCII (Таблица 1). Видно, что для хранения неупакованных десятичных чисел требуется в два раза больше памяти, так как каждая цифра представляется 8-битным кодом. Таблица 1: ASCII-коды десятичных цифр

2. Преобразование целых 16-битных чисел в двоично-десятичные числа

На сайте www.atmel.com предлагается программа "bin2bcd16" для преобразования целых 16-битных двоичных чисел в двоично-десятичные упакованные числа. В данной статье рассматривается программа "bin16bcd5" (см. Приложение, Программа 1), написанная Терешкиным А. В. согласно алгоритму, изложенному в , и выполняющая ту же задачу. Последняя программа по быстродействию, длине кода и количеству используемых регистров оказалась более эффективной, чем первая.

Алгоритм программы "bin16bcd5" заключается в следующем. Предположим, что имеется целое беззнаковое 16-битное число (диапазон от 0 до 65535). Очевидно, что необходимо найти 5 десятичных цифр. Способ преобразования заключается в том, чтобы, вычитая из исходного числа число 10000, сначала определить десятичную цифру десятков тысяч. Затем находится цифра тысяч последовательным вычитанием числа 1000 и т. д. Вычитание каждый раз производится до получения отрицательной разности с подсчетом числа вычитаний. При переходе к определению каждого следующего десятичного разряда в регистрах исходного числа восстанавливается последняя положительная разность. После того, как будет найдена десятичная цифра десятков, в регистрах исходного числа останется десятичная цифра единиц.

Программа "bin16ASCII5" (см. Приложение, Программа 2) преобразует целое двоичное 16-битное число в десятичное неупакованное число. При этом используется тот же алгоритм.

3. Преобразование двоичной дроби в двоично-десятичную дробь

Двоичная дробь, по определению, представляется следующим выражением:

0.A-1A-2 ... A-m = A-1*2-1 + A-2*2-2 + ... A-m*2-m

Из этого представления следует алгоритм преобразования (Рис. 2), который содержит m шагов. На каждом шаге к двоично-десятичному результату прибавляется очередная двоичная цифра и весь результат делится на 2.

На изображены двоичный регистр, который содержит исходную двоичную дробь и регистр двоично-десятичного упакованного результата. Для наглядности у обоих регистров также показаны разряд единиц и положение точки, которые в памяти микропроцессора никак не представлены, но положение которых всегда строго оговорено. Количество циклов рассматриваемого алгоритма равно количеству бит двоичной дроби. Разрядность двоично-десятичного регистра определяется требуемой точностью вычислений.

Сложить эту цифру с двоично-десятичным числом означает, что ее нужно поместить в разряд единиц двоично-десятичного числа, откуда при последующем делении на два цифра A-i сдвинется в старший разряд старшей тетрады десятичной дроби. При программировании мы можем представлять, что разрядом единиц десятичной дроби является бит переноса С.

При делении на два двоично-десятичного упакованного числа, так же как и при делении двоичного числа, его сдвигают вправо на один разряд. При этом на два делится каждая тетрада, то есть каждая десятичная цифра. При делении четной десятичной цифры в соответствующем разряде снова получается десятичная цифра, и никакой коррекции не требуется. При делении на 2 нечетной десятичной цифры остаток, равный 5, должен быть добавлен к более младшему десятичному разряду, но на самом деле при двоичном сдвиге в более младшую тетраду добавляется число 8 (вес старшего разряда тетрады). Поэтому требуется коррекция результата, которая заключается в вычитании числа 3 из содержимого тех тетрад, которые после сдвига вправо имеют установленные старшие разряды.

4. Преобразование чисел с плавающей точкой в двоично-десятичные числа

Представление чисел с плавающей точкой имеет следующий вид:

где М - двоичная мантисса числа, П - двоичный порядок числа.

Такое представление часто используется и в десятичной системе счисления для представления очень больших или очень малых чисел. Мантисса и порядок представляют собой целые знаковые числа. Знак мантиссы является знаком всего числа. Порядок показывает истинное положение точки вместо того, которое она занимает в изображении мантиссы. Двоичное число с плавающей точкой отличается от привычного нам десятичного тем, что точка является двоичной, то есть порядок показывает на количество двоичных (а не десятичных) разрядов, на которое необходимо переместить эту точку влево или вправо.

Нормализованным представлением числа с плавающей точкой называют такое представление, когда мантисса является правильной дробью, и старшая ее цифра отличается от нуля. Но для двоичного числа требование того, что старшая цифра отличается от нуля означает, что эта цифра равна 1. Если старшая цифра точно известна, то ее можно не хранить в памяти.

Примером смешанной системы счисления является двоично-десятичная система . В двоично-десятичной системе счисления для изображения каждой десятичной цифры отводится 4 двоичных разряда, поскольку максимальная десятичная цифра 9 кодируется как 1001 2 . Например,

925 10 = 1001 0010 0101 2-10 .

Здесь последовательные четверки (тетрады) двоичных разрядов изображают цифры 9, 2 и 5 десятичной записи соответственно.

Хотя в двоично-десятичной записи используются только цифры 0 и 1, эта запись отличается от двоичного изображения данного числа. Например, двоичный код 1001 0010 0101 соответствует десятичному числу 2341, а не 925.

В случае если P=Q l (l – целое положительное число), запись любого числа в смешанной системе счисления тождественно совпадает с изображением этого числа в системе счисления с основанием Q. Примерами такой смешанной системы счисления являются двоично-восьмеричная и двоично-шестнадцатеричная.

Например,

A2 16 = 1010 0010 2 = 1010 0010 2-16

ПРЕДСТАВЛЕНИЕ ОТРИЦАТЕЛЬНЫХ ЧИСЕЛ В ФОРМАТЕ С ФИКСИРОВАННОЙ ЗАПЯТОЙ (ТОЧКОЙ)

В компьютерах в целях упрощения выполнения арифметических операций применяются специальные двоичные коды для представления отрицательных чисел: обратный и дополнительный. При помощи этих кодов упрощается определение знака результата операции при алгебраическом сложении. Операция вычитания (или алгебраического сложения) сводится к арифметическому сложению операндов, облегчается выработка признаков переполнения разрядной сетки. В результате упрощаются устройства компьютера, выполняющих арифметические операции.

Известно, что одним из способов выполнения операции вычитания является замена знака вычитаемого на противоположный и прибавление его к уменьшаемому:

А - В = А + (- В)

Этим операцию арифметического вычитания заменяют операцией алгебраического сложения, которую можно выполнить при помощи двоичных сумматоров.

Для машинного представления отрицательных чисел используют коды прямой, дополнительный, обратный . Упрощенное определение этих кодов может быть дано следующим образом. Если число А в обычном двоичном коде - прямом двоичном коде, изобразить как

[A] пр = 0.an an-1 an-2.....a1 a0,

тогда число -А в этом же коде представляется как

[-A]пр = 1.an an-1 an-2.....a1 a0,

а в обратном (инверсном) коде это число будет иметь вид:

[-A]об = 1.an an-1 an-2.....a1 a0,

ai = 1, если ai = 0,

ai = 0, если ai = 1,

a i - цифра i -того разряда двоичного числа. Следовательно, при переходе от прямого кода к обратному все цифры разрядов матиссы числа инвертируются.

Тогда число -A в дополнительном коде изображается в виде

[-A]доп = [-A]об + 1

Таким образом, для получения дополнительного кода отрицательных чисел нужно сначала инвертировать цифровую часть исходного числа, в результате чего получается его обратный код, а затем добавить единицу в младший разряд цифровой части числа.

Дополнительный код некоторого числа получается его заменой на новое число, дополняющее его до числа, равного весу разряда, следующего за самым старшим разрядом разрядной сетки, используемой для представления мантиссы числа в формате с фиксированной запятой. Поэтому такой код числа называется дополнительным.

Представим, что мы имеем только два разряда для представления чисел в десятичной системе счисления. Тогда максимальное число, которое можно изобразить будет 99, а вес третьего несуществующего старшего разряда будет 10 2 , т.е. 100. В таком случае для числа 20 дополнительным будет число 80, которое дополняет 20 до 100 (100 - 20 = 80). Следовательно по определению вычитание

можно заменить на сложение:

Здесь старшая единица выходит за пределы выделенной разрядной сетки, в которой остается только число 30, т.е. результат вычитания из 50 числа 20.

А теперь рассмотрим похожий пример для чисел, представленных 4-х разрядным двоичным кодом. Найдем дополнительное число для 0010 2 = 210. Надо из 0000 вычесть 0010, получим 1110, которое и является дополнительным кодом 2. Разряд, изображенный в квадратных скобках на самом деле не существует. Но так как у нас 4-х разрядная сетка, то выполнить такое вычитание в принципе невозможно, а тем более мы стараемся избавиться от вычитания. Поэтому дополнительный код числа получают способом, описанным ранее, т.е. сначала получают обратный код числа, а затем прибавляют к нему 1. Проделав все это с нашим числом (2), нетрудно убедиться, что получится аналогичный ответ.

Подчеркнем, что дополнительный и обратный коды используются только для представления отрицательных двоичных чисел в форме с фиксированной запятой . Положительные числа в этих кодах не меняют своего изображения и представляются как в прямом коде.

Таким образом, цифровые разряды отрицательного числа в прямом коде остаются неизменными, а в знаковой части записывается единица.

Рассмотрим простые примеры.

Семерка в прямом коде представляется так:

пр = 0.0001112

Число -7 в прямом коде:

[-7]пр = 1.0001112,

а в обратном коде будет иметь вид

[-7]об = 1.1110002,

т.е. единицы заменяются нулями, а нули единицами. То же число в дополнительном коде будет:

[-7]доп = 1.1110012.

Рассмотрим еще раз как процедура вычитания, при помощи представления вычитаемого в дополнительном коде, сводится к процедуре сложения. Вычтем из 10 число 7: 10 - 7 = 3. Если оба операнда представлены в прямом коде, то процедура вычитания выполняется так:

-1.000111

А если вычитаемое, т.е. -7, представить в дополнительном коде, то процедура вычитания сводится к процедуре сложения:

+ 1.111001

1 0.000011 = 310.

В настоящее время в компьютерах для представления отрицательных чисел в формате с фиксированной запятой обычно используется дополнительный код.

Формой представления чисел в цифровых автоматах называется совокупность правил, позволяющих установить взаимное соответствие между записью числа и его количественным эквивалентом.

Машинное (автоматное) изображение числа это есть представление числа в разрядной сетке цифрового автомата . Условное обозначение машинного изображения числа, например, A будем представлять как [A] .

Из-за ограниченной длины машинных слов, множество чисел, которые можно представить в машине конечное. Сравнение различных форм представления чисел в компьютерах обычно производится на основе оценки диапазона и точности представления числа .

В повседневной практике наиболее распространенной является форма представления чисел в виде последовательности цифр, разделенной запятой на целую и дробную части. Числа, представленные в такой форме, называются числами с естественной запятой или числами в естественной форме . В естественной форме число записывается в естественном натуральном виде, например 12560 - целое число, 0,003572 - правильная дробь, 4,89760 - неправильная дробь.

При представлении чисел в такой форме обязательно требуется для каждого числа указание о положении его запятой в разрядной сетке, выделенной для представления числа в машине, что требует дополнительных аппаратных затрат достаточно большого объема. Поэтому в компьютерах получили распространение две другие формы представления: с фиксированной и плавающей запятой (точкой) .

Необходимость в указании положения запятой отпадает, если место запятой в разрядной сетки машины заранее фиксировано раз и навсегда. Такая форма представления чисел называется представлением с фиксированной запятой (точкой) .

Так как числа бывают положительные и отрицательные, то формат (разрядная сетка) машинного изображения разбивается на знаковую часть и поле числа . В поле числа размещается само изображение числа, которое мы будем условно называть мантиссой числа. Для кодирования знака числа используется самый старший разряд разрядной сетки, отведенной для изображения двоичного числа, а остальные разряды отводятся под мантиссу числа. Положение запятой в разрядной сетке строго фиксируется, обычно или правее самого младшего разряда мантиссы, или левее самого старшего. В первом случае число представляется как целое, во втором - как правильная дробь . В настоящее время в подавляющем большинстве в компьютерах в формате с фиксированной точкой представляются целые числа.

В знаковую часть записывается информация о знаке числа. Принято, что знак положительного числа "+" изображается символом 0, а знак отрицательного числа "-" изображается символом 1.

Например, в двоичном коде, используя 6-разрядную сетку, число 7 в форме с фиксированной запятой можно представить в виде:

где цифра левее точки это знак числа, а пять цифр правее точки - мантисса числа в прямом коде. Здесь подразумевается, что запятая фиксирована правее младшего разряда , а точка в изображении числа в данном случае просто разделяет знаковый бит от мантиссы числа.

В дальнейшем часто будет использоваться в примерах такой вид представления числа в машинной форме. Можно использовать и другую форму представления числа в машинной форме:

где знаковый разряд выделяется квадратными скобками.

Количество разрядов в разрядной сетке, отведенное для изображения мантиссы числа, определяет диапазон и точность представления числа с фиксированной запятой. Максимальное по абсолютной величине двоичное число изображается единицами во всех разрядах, исключая знаковый, т.е. для целого числа

|A|max = (2 (n -1) - 1),

где n - полная длина разрядной сетки. В случае 16-разрядной сетки

|A| max = (2 (16-1) - 1) = 32767 10 ,

т.е. диапазон представления целых чисел в этом случае будет от +3276710 до -3276710 .

Для случая, когда запятая фиксируется правее младшего разряда мантиссы, т.е. для целых чисел, числа, у которых модуль больше, чем

(2 (n-1) - 1) и меньше единицы не представляются в форме с фиксированной запятой. Числа, по абсолютной величине меньше единицы младшего разряда разрядной сетки, называются в этом случае машинным нулем.Отрицательный ноль запрещен.

В некоторых случаях, когда можно оперировать только модулями чисел, вся разрядная сетка, включая самый старший разряд, отводится для представления числа, что позволяет расширить диапазон изображения чисел.

Сложение положительных чисел Сложение многоразрядных чисел осуществляется по правилам двоичной арифметики; особенность проявляется при сложении двух единиц. При S = Ю(10)сумма двух единиц равна двум, что эквивалентно 10(2). Таким образом, вместо одного разряда образуется два. В этом...
(Вычислительная техника)
  • Арифметические действия над числами с плавающей запятой
    Сложение чисел При сложении чисел с плавающей запятой результат определяется как сумма мантисс слагаемых с общим для слагаемых порядком. Если знаки обеих мантисс одинаковы, то они складываются в прямых кодах, если разные - в дополнительном или обратном кодах. В табл. 2.8 приведен порядок действий...
    (Вычислительная техника)
  • Числа в десятичной системе счисления
    10° - единица 109 - миллиард 1024 - септиллион 101 - десять 1012 - триллион 1027 - октиллион 102 - сто 1015 - квадриллион Ю30 - нониллион 103 - тысяча 1018 - квинтиллион 1033 - дециллион 106 - миллион 1021 - ...
    (Физика)
  • Системы счисления
    Человеку издревле приходилось считать различные предметы и записывать их количество. Для этих целей возникла унарная система записи, при которой числа обозначались соответствующим количеством черточек (или засечек). Например, число 5 представлялось как 111 |. Унарная запись очень громоздкая и...
    (Архитектура ЭВМ)
  • Экономичность системы счисления
    Число в системе счисления рек разрядами, очевидно, будет иметь наибольшее значение в том случае, если все цифры числа окажутся максимальными, т. е. равными - 1). Тогда (гр)тах =(/>-1)...(/>-!) = / -1. к цифр Количество разрядов числа при переходе от одной системы счисления...
    (Архитектура ЭВМ)
  • Корректура счисления пути по одной линии положения
    При подходе к побережью обстановка может сложиться так, что судоводитель имеет возможность получить только одну линию положения. Например, открылась вершина горы, на которую можно измерить только пеленг, или прослушиваются сигналы только одного радиомаяка. Такая же обстановка складывается и при определении...
    (Анализ и обработка навигационных измерений)


  • Статьи по теме