Целевые функции. Выбор критериев

Определение . Любое решение системы ограничений называется допустимым решением ЗЛП.
Определение . Допустимое решение, в котором целевая функция достигает максимального или минимального значения, называется оптимальным решением.

В силу этих определений задача ЛП может быть сформулирована следующим образом: среди всех точек выпуклой области, являющейся решением системы ограничений, выбрать такую, координаты которой минимизируют (максимизируют) линейную функцию F = с 1 x + с 2 y .
Заметим, что переменные x , y в ЗЛП принимают, как правило, неотрицательные значения (x ≥ 0, y ≥ 0), поэтому область расположена в I четверти координатной плоскости.

Рассмотрим линейную функцию F = с 1 x + с 2 y и зафиксируем какое-нибудь ее значение F . Пусть, к примеру, F = 0, т.е. с 1 x + с 2 y = 0. Графиком этого уравнения будет прямая, проходящая через начало координат (0;0) (рис.).
Рисунок
При изменении этого фиксированного значения F = d , прямая с 1 x + с 2 y = d будет смещаться параллельно и «зачертит» всю плоскость. Пусть D – многоугольник – область решения системы ограничений. При изменении d прямая с 1 x + с 2 y = d , при некотором значении d = d 1 достигнет многоугольника D , назовем эту точку А «точкой входа», и затем, пройдя многоугольник, при некотором значении d = d 2 будем иметь с ним последнюю общую точку В , назовем В «точкой выхода».
Очевидно, что своего наименьшего и наибольшего значения целевая функция F =с 1 x + с 2 y достигнет в точках «входа» А и «выхода» В .
Учитывая, что оптимальное значение на множестве допустимых решений целевая функция принимает в вершинах области D , можно предложить следующий план решения ЗЛП:

  1. построить область решений системы ограничений;
  2. построить прямую, соответствующую целевой функции, и параллельным переносом этой прямой найти точку «входа» или «выхода» (в зависимости от требования минимизировать или максимизировать целевую функцию);
  3. определить координаты этой точки, вычислить в них значение целевой функции.
Заметим, что вектор (с 1 , с 2), перпендикулярный прямой, показывает направление роста целевой функции.

При графическом решении ЗЛП возможны два случая, которые требуют особого обсуждения.

Случай 1
Рисунок 6
При перемещении прямой с 1 x + с 2 y = d «вход» или «выход» (как на рисунке) произойдет по стороне многоугольника. Это случится, если в многоугольнике есть стороны, параллельные прямой с 1 х + с 2 у = d .
В этом случае точек «выхода» (« входа») бесчисленное множество, а именно – любая точка отрезка АВ . Это означает, что целевая функция принимает максимальное(минимальное) значение не в одной точке, а во всех точках, лежащих на соответствующей стороне многоугольника D .

Случай 2
Рассмотрим случай, когда область допустимых значений неограниченна.
В случае неограниченной области целевая функция может быть задана таким образом, что соответствующая ей прямая не имеет точки «выхода» (или «входа»). Тогда максимальное значение функции (минимальное) не достигается никогда – говорят, что функция не ограничена.
Рисунок
Необходимо найти максимальное значение целевой функции F = 4x + 6y → max , при системе ограничений
Построим область допустимых решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами.
x + y = 18


x

12

9

y

6

9

0,5x + y = 12


x

12

18

y

6

3

x = 12 – параллельна оси OY ;
y = 9 – параллельна оси OX ;
x = 0 – ось OY ;
y = 0 – ось OX ;
x ≥ 0 – полуплоскость правее оси OY ;
y ≥ 0 – полуплоскость выше оси OX ;
y ≤ 9 – полуплоскость ниже y = 9;
x ≤ 12 – полуплоскость левее x = 12;
0,5x + y ≤ 12 – полуплоскость ниже прямой 0,5x + y = 12;
x + y ≤ 18 – полуплоскость ниже прямой x + y = 18.
Рисунок
Пересечением всех этих полуплоскостей является очевидно, пятиугольник ОАВСД , с вершинами в точках О (0; 0), А (0; 9), В (6; 9), С (12; 6), Д (12; 0). Этот пятиугольник и образует область допустимых решений задачи.

Рассмотрим целевую функцию задачи F = 4x + 6y → max.


x

3

0

y

–2

0

Построим прямую, отвечающую значению функции F = 0: 4x + 6y = 0. Будем двигать эту прямую параллельным образом. Из всего семейства прямых 4x + 6y = const последней вершиной, через которую пройдет прямая при выходе за границу многоугольника, будет вершина С (12; 6). Именно в ней F = 4x + 6y достигнет своего максимального значения.
Значит, при x = 12, y = 6 функция F достигает своего максимального значения F = 4 ∙ 12 + 6 ∙ 6 = 84, равного 84. Точка с координатами (12; 6) удовлетворяет всем неравенствам системы ограничений, и в ней значение целевой функции оптимально F * = 84 (оптимальное значение будем обозначать «*»).
Задача решена. Итак, необходимо выпустить 12 изделий I вида и 6 изделий II вида, при этом прибыль составит 84 тыс. руб.

Графический метод применяется для решения задач, которые имели в системе ограничений только две переменные. Этот метод может применяться и для систем неравенств, имеющих три переменных. Геометрически ситуация будет иная, роль прямых будут играть плоскости в трехмерном пространстве, а решением неравенства от трех переменных будет являться полупространство, находящееся по одну сторону от плоскости. Роль областей будут играть многогранники, являющиеся пересечением полупространств.

Проектные параметры. Этим термином обозначают независимые переменные параметры, которые полностью и однозначно определяют решаемую задачу проектирования. Проектные параметры - неизвестные величины, значения которых вычисляются в процессе оптимизации. В качестве проектных параметров могут служить любые основные или производные величины, служащие для количественного описания системы. Так, это могут быть неизвестные значения длины, массы, времени, температуры. Число проектных параметров характеризует степень сложности данной задачи проектирования. Обычно число проектных параметров обозначают через п, а сами проектные параметры через х с соответствующими индексами. Таким образом п проектных параметров данной задачи будем обозначать через

Х1,Х2,Х3,…Хп.

Следует отметить, что проектные параметры в некоторых источниках могут называться внутренними управляемыми параметрами.

Целевая функция. Это - выражение, значение которого инженер стремиться сделать максимальным или минимальным. Целевая функция позволяет количественно сравнить два альтернативных решения. С математической точки зрения целевая функция описывает некоторую (п+1) - мерную поверхность. Ее значение определяется проектными параметрами

М = М (х1,х2,…,хп).

Примерами целевой функции, часто встречающимися в инженерной практике, являются стоимость, вес, прочность, габариты, КПД. Если имеется только один проектный параметр, то целевую функцию можно представить кривой на плоскости (рис.1). Если проектных параметров два, то целевая функция будет изображаться поверхностью в пространстве трех измерений (рис.2). При трех и более проектных параметрах поверхности, задаваемые целевой функцией, называются гиперповерхностями и не поддаются изображению обычными средствами. Топологические свойства поверхности целевой функции играют большую роль в процессе оптимизации, так как от них зависит выбор наиболее эффективного алгоритма.

Рисунок 1. Одномерная целевая функция.


Рисунок 2. Двумерная целевая функция.

Целевая функция в ряде случаев может принимать самые неожиданные формы. Например, ее не всегда удается выразить в замкнутой математической форме, в других случаях она может представлять собой кусочно-линейную функцию. Для задания целевой функции иногда может потребоваться таблица технических данных (например, таблица состояния водяного пара) или может понадобиться провести эксперимент. В ряде случаев проектные параметры принимают только целые значения. Примером может служить число зубьев в зубчатой передаче или число болтов во фланце. Иногда проектные параметры имеют только два значения - да или нет. Качественные параметры, такие как удовлетворение, которое испытывает приобретший изделие покупатель, надежность, эстетичность, трудно учитывать в процессе оптимизации, так как их практически невозможно охарактеризовать количественно. Однако в каком бы виде ни была представлена целевая функция, она должна быть однозначной функцией проектных параметров.

В ряде задач оптимизации требуется введение более одной целевой функции. Иногда одна из них может оказаться несовместимой с другой. Примером служит проектирование самолетов, когда одновременно требуется обеспечить максимальную прочность, минимальный вес и минимальную стоимость. В таких случаях конструктор должен ввести систему приоритетов и поставить в соответствие каждой целевой функции некоторый безразмерный множитель. В результате появляется «функция компромисса», позволяющая в процессе оптимизации пользоваться одной составной целевой функцией.

Поиск минимума и максимума. Одни алгоритмы оптимизации приспособлены для поиска максимума, другие - для поиска минимума. Однако независимо от типа решаемой задачи на экстремум можно пользоваться одним и тем же алгоритмом, так как задачу минимизации можно легко превратить в задачу на поиск максимума, поменяв знак целевой функции на обратный. Этот прием иллюстрируется на рис.3.


Рисунок 3. При изменении знака целевой функции на противоположный в задаче на минимум, превращает ее в задачу на максимум.

Пространство проектирования. Так называется область, определяемая всеми п, проектными параметрами. Пространство проектирования не столь велико, как может показаться, поскольку оно обычно ограничено рядом условий, связанных с физической сущностью задачи. Ограничения могут быть столь сильными, что задача не будет иметь ни одного удовлетворительного решения. Ограничения делятся на две группы: ограничения - равенства и ограничения - неравенства.

Ограничения-равенства - это зависимость между проектными параметрами, которые должны учитываться при отыскании решения. Они отражают законы природы, экономики, права, господствующие вкусы и наличие необходимых материалов. Число ограничений - равенств может быть любым. Они имеют вид

С1 (X1, X2, Х3, . . ., Хп) = 0,

С2 (X1, X2, Х3, . . ., Х п) = 0,

..……………………………..

Сj(X1, X2, Х 3, . . ., Хп) = 0.

Ограничения-неравенства - это особый вид ограничений, выражаемых неравенствами. В общем случае их может быть сколько угодно много, причем все они имеют вид

z1 ?r1(X1, X2, Х3, . . ., Хп) ?Z1

z2 ?r2(X1, X2, Х3, . . ., Хп) ?Z2

………………………………………

zk ?rk(X1, X2, Х3, . . ., Хп) ?Zk

Следует отметить, что очень часто в связи с ограничениями оптимальное значение целевой функции достигается не там, где ее поверхность имеет нулевой градиент. Нередко лучшее решение соответствует одной из границ области проектирования.

Прямые и функциональные ограничения. Прямые ограничения имеют вид

xнi ? xi ? xвi при i ? ,

где xнi , xвi - минимально и максимально допустимые значения i-го управляемого параметра; п - размерность пространства управляемых параметров. Например для многих объектов параметры элементов не могут быть отрицательными: xнi ? 0 (геометрические размеры, электрические сопротивления, массы и т.п.).

Функциональные ограничения, как правило, представляют собой условия работоспособности выходных параметров, не вошедших в целевую функцию. Функциональные ограничения могут быть:

  • 1) типа равенств
  • ш (Х) = 0; (2.1)
  • 2) типа неравенств

ц (Х) › 0, (2.2)

где ш (Х) и ц (Х) - вектор-функции.

Прямые и функциональные ограничения формируют допустимую область поиска:

ХД = {Х | ш(Х) = 0, ц (Х)›0, xi › xнi ,

xi ‹ xвi при i ? }.

Если ограничения (2.1) и (2.2) совпадают с условиями работоспособности, то допустимую область называют также областью работоспособности ХР.

Любая из точек Х принадлежащая ХД является допустимым решением задачи. Часто параметрический синтез ставится как задача определения любого из допустимых решений. Однако гораздо важнее решить задачу оптимизации - найти оптимальное решение среди допустимых.

Локальный оптимум. Так называется точка пространства проектирования, в которой целевая функция имеет наибольшее значение по сравнению с ее значениями во всех других точках ее ближайшей окрестности. На рис.4 показана одномерная целевая функция, имеющая два локальных оптимума. Часто пространство проектирования содержит много локальных оптимумов и следует соблюдать осторожность, чтобы не принять первый из них за оптимальное решение задачи.


Рисунок 4. Произвольная целевая функция может иметь несколько локальных оптимумов.

Глобальный оптимум - это оптимальное решение для всего пространства проектирования. Оно лучше всех других решений соответствующих локальным оптимумам, и именно его ищет конструктор. Возможен случай нескольких равных глобальных оптимумов, расположенных в разных частях пространства проектирования. Это позволяет выбрать наилучший вариант из равных оптимальных вариантов по целевой функции. В данном случае проектировщик может выбрать вариант интуитивно либо на основе сравнения полученных вариантов.

Выбор критериев. Основная проблема постановки экстремальных задач заключается в формулировке целевой функции. Сложность выбора целевой функции состоит в том, что любой технический объект первоначально имеет векторный характер критериев оптимальности (многокритериальность). Причем улучшение одного из выходных параметров, как правило, приводит к ухудшению другого, так как все выходные параметры являются функциями одних и тех же управляемых параметров и не могут изменяться независимо друг от друга. Такие выходные параметры называют конфликтными параметрами.

Целевая функция должна быть одна (принцип однозначности). Сведение многокритериальной задачи к однокритериальной называют сверткой векторного критерия. Задача поиска его экстремума сводится к задаче математического программирования. В зависимости от того каким образом выбираются и объединяются выходные параметры, в скалярной функции качества, различают частные, аддитивные, мультипликативные, минимаксные, статистические критерии и другие критерии. В техническом задании на проектирование технического объекта указываются требования к основным выходным параметрам. Эти требования выражаются в виде конкретных числовых данных, диапазона их изменения, условия функционирования и допустимых минимальных или максимальных значений. Требуемые соотношения между выходными параметрами и техническими требованиями (ТТ) называют условиями работоспособности и записываются в виде:

yi < TTi , i О ; yi > TTj , j О ;

yr = TTr ± ?yr; r О .

где yi, yj, yr - множество выходных параметров;

TTi, TTj, TTr - требуемые количественные значения соответствующих выходных параметров по техническому заданию;

Yr - допустимое отклонение r-го выходного параметра от указанного в техническом задании значения TTr.

Условия работоспособности имеют определяющее значение в разработке технических устройств, так как задачей проектирования является выбор проектного решения, в котором наилучшим образом выполняются все условия работоспособности во всем диапазоне изменения внешних параметров и при выполнении всех требований технического задания.

Частные критерии могут применяться в случаях, когда среди выходных параметров можно выделить один основной параметр yi(Х), наиболее полно отражающий эффективность проектируемого объекта. Этот параметр принимают за целевую функцию. Примерами таких параметров являются: для энергетического объекта - мощность, для технологического автомата - производительность, для транспортного средства - грузоподъемность. Для многих технических объектов таким параметром служит стоимость. Условия работоспособности всех остальных выходных параметров объекта относят при этом к функциональным ограничениям. Оптимизация на основе такой постановки называется оптимизацией по частному критерию.

Достоинство такого подхода - его простота, существенный недостаток - то, что большой запас работоспособности можно получить только по основному параметру, который принят в качестве целевой функции, а другие выходные параметры вообще не будут иметь запасов.

Взвешенный аддитивный критерий применяют тогда, когда условия работоспособности позволяют выделить две группы выходных параметров. В первую группу входят выходные параметры, значения которых в процессе оптимизации нужно увеличивать y+i(X) (производительность, помехоустойчивость, вероятность безотказной работы и т. п.), во вторую - выходные параметры, значения которых следует уменьшать y-i (X) (расход топлива, длительность переходного процесса, перерегулирование, смещение и пр.). Объединение нескольких выходных параметров, имеющих в общем случае различную физическую размерность, в одной скалярной целевой функции требует предварительного нормирования этих параметров. Способы нормирования параметров будут рассмотрены ниже. Пока будем считать, что все у(Х) безразмерны и среди них нет таких, которым соответствуют условия работоспособности типа равенства. Тогда для случая минимизации целевой функции свертка векторного критерия будет иметь вид

где aj>0 - весовой коэффициент, определяющий степень важности j-го выходного параметра (обычно aj выбираются проектировщиком и в процессе оптимизации остаются постоянными).

Целевую функцию в форме (2.1), выражающую аддитивный критерий, можно записать и в том случае, когда все или основные условия работоспособности имеют вид равенств. Тогда целевая функция

определяет среднеквадратичное приближение yj(X) к заданным техническим требованиям TTj.

Мультипликативный критерий может применяться в тех случаях, когда отсутствуют условия работоспособности типа равенств и выходные параметры не могут принимать нулевые значения. Тогда минимизируемая мультипликативная целевая функция имеет вид

Одним из наиболее существенных недостатков как аддитивного, так и мультипликативного критерия является неучет в постановке задачи технических требований, предъявляемых к выходным параметрам.

Критерий формы функции используют, когда ставится задача наилучшего совпадения заданной (эталонной) характеристики yТТ(Х,щ) с соответствующей выходной характеристикой y(Х,щ) проектируемого объекта, где щ - некоторая переменная, например частота, время, избранная фазовая переменная. К таким задачам относятся: проектирование системы автоматического регулирования, обеспечивающей требуемый вид переходного процесса по регулируемому параметру; определение параметров модели транзистора, дающих максимальное совпадение его теоретических вольт-амперных характеристик с экспериментальными; поиск параметров сечений балки, значения которых приводят к наилучшему совпадению заданной эпюры напряжений с расчетной, и т. п.

Использование частного критерия оптимизации в этих случаях сводится к замене непрерывных характеристик конечным множеством узловых точек и выбору одной из следующих целевых функций, подлежащих минимизации:


где р -- количество узловых точек щj на оси переменной щ; aj - весовые коэффициенты, значения которых тем больше, чем меньшее отклонение y(Х, щj) - yTT(Х, щj) нужно получить в j-и точке.

Максиминные (минимаксные) критерии позволяют достичь одной из целей оптимального проектирования - наилучшего удовлетворения условий работоспособности.

Введем количественную оценку степени выполнения j-го условия работоспособности, обозначим ее через zj и будем называть запасом работоспособности параметра yj. Расчет запаса по j-му выходному параметру можно выполнить различными способами, например,

где аj - весовой коэффициент; yjном - номинальное значение j-го выходного параметра; дj - величина, характеризующая разброс j -го выходного параметра.

Здесь предполагается, что все соотношения сведены к виду yi < TТj. Если yi > TТj , то -yj < -TТj . Следует принимать аj >1 (рекомендуемые значения 5 ? аj ? 20), если желательно достичь выполнения j-го технического требования с заданным допуском, т. е. yj = TТj ± ?yj; aj=l, если необходимо получить максимально возможную оценку zj.

Качество функционирования технической системы характеризуется вектором выходных параметров и, следовательно, вектором Z=(zm,zm,…,zm). Поэтому целевую функцию следует формировать как некоторую функцию ц(Z) вектора оценок. Например, если в качестве целевой функции рассматривается запас только того выходного параметра, который в данной точке X является наихудшим с позиций выполнения требований ТЗ, то

где m - количество запасов работоспособности.

Естественно теперь поставить задачу о выборе такой стратегии поиска X, которая максимизировала бы минимальный из запасов, т. е.

где ХД - допустимая для поиска область.

Критерий оптимизации с целевой функцией (2.6) называют максиминным критерием.

Статистические критерии. Оптимизация при статистических критериях имеет целью получение максимальной вероятности Р выполнение работоспособности. Эту вероятность принимают в качестве целевой функции. Тогда имеем задачу

Нормирование управляемых и выходных параметров. Пространство управляемых параметров - метрическое. Поэтому при выборе направлений и величин шагов поиска необходимо вводить ту или иную норму, отождествляемую с расстоянием между двумя точками. Последнее предполагает, что все управляемые параметры имеют одинаковую размерность или являются безразмерными.

Возможны различные способы нормирования. В качестве примера рассмотрим способ логарифмического нормирования, достоинством которого является переход от абсолютных приращений параметров к относительным. В этом случае i-и управляемый параметр ui преобразуется в безразмерный хi следующим образом:

где оi - коэффициент, численно равный единице параметра ui .

Нормирование выходных параметров можно выполнить с помощью весовых коэффициентов, как в аддитивом критерии, или переходом от уj к запасам работоспособности zj по (2.5).

Являясь централизованным, выполняет следующие функции функцию регулирования цен между новой и серийной продукцией функцию целевого и постоянного обеспечения -процесса производства новой техники денежными средствами функцию перераспределения средств по освоению новой техники между предприятиями, в различной степени участвующими в освоении новой техники.  

Что касается расходов государства, то они представляют целевые фонды денежных средств , ассигнованные и фактически использованные государством для реализации своих функций. К основным функциям целевых расходов относят  

Перейдем теперь к описанию целевых функций. Целевая функция ПМ  

Целевая функция. Целевая функция определяет задачу, которая должна быть решена в процессе оптимизации. Например, в этой главе мы занимаемся минимизацией риска портфеля активов. Типичной целевой функцией для портфеля рискованных активов будет  

ФУНКЦИЯ ЦЕЛЕВАЯ - это функция, которая связывает цель (оптимизируемую переменную) и управляемые переменные в задаче оптимизации.  

Первое выражение называется целевой функцией (равно произведению прибыли на единицу продукта с,- на выпуск этого продукта Xj). Остальные уравнения составляют линейные ограничения , которые означают, что расход сырья, полуфабрикатов, качество продукции , мощности, т. е. исходные ресурсы, не должны превышать заранее установленных величин / /. Коэффициенты а,7 - постоянные величины , показывающие расход ресурса на /-и продукт. Задача может быть решена при неотрицательности переменных и при числе неизвестных большем, чем число ограничений. Если последнее условие не удовлетворяется, то задача является несовместной.  

В качестве целевой функции принимаем выработку автобензина А-76  

Целевая функция имеет вид  

Поскольку от объема производства зависят переменные затраты , то максимизации подлежит разность между ценой и переменными затратами . Условно-постоянные расходы (амортизационные отчисления , затраты па текущий ремонт , заработная плата с начислениям общецеховые и общезаводские расходы) в модель не включают и вычитают из целевой функции, полученной на ЭВМ. Если в качестве неизвестных принята длительность работы установки по каждому варианту, то рассчитывают переменные затраты на один день ее работы.  

Условие (4,56) характеризует целевую функцию, те максимальную разность между оптовой ценой и себестоимостью товарных бензинов.  

В качестве целевой функции при решении данной задачи может быть как максимум прибыли по предприятию (4.52), так и максимум объема производства товарной продукции в стоимостном выражении (4.53)  

Приведенная модель расчета себестоимости является одновременно и моделью расчета прибыли предприятия. Однако основной эффект реализации расчета себестоимости на ЭВМ состоит в возможности использования результатов этого расчета для оптимизации производственной программы предприятия . В данном случае в качестве целевой функции может быть принят максимум прибыли от реализации продукции . Оптимизируя производственную программу , необходимо максимизировать функцию вида  

Преимущества и недостатки структуры, ориентированной на покупателя, в общем те же, что и у продуктовой структуры , если учесть различия, связанные с разной целевой функцией.  

Так как интегральную энергоемкость определяют с учетом энергозатрат прямых и опосредованных (через материальные, технические и трудовые ресурсы), то и в суммарной народнохозяйственной экономии учитывают снижение энергоемкости каждого из расходуемых и используемых ресурсов. Энергоемкость каждого целевого эффекта (продукта, услуги) рассчитывают как сумму энергоемкостей по стадиям его формирования. Например, энергоемкость трубы складывается из энергоемкости добычи руды, выплавки стали, проката листа и собственно изготовления трубы и измеряется в килограммах условного топлива на 1 руб. ее стоимости. Существующие формы учета и предложенная методика позволяют определить эти показатели для любого продукта, услуги и т.д. Таким образом, для экономии энергии необходимо снизить расход производственных ресурсов всех видов при достижении заданного целевого эффекта. Эти ресурсы и конечный целевой эффект измеряют в стоимостном выражении. Затраты на них зависят от масштаба применяемой технологии, уровня срвершенства технических средств , в которых реализуется главная целевая функция - целевой технологический процесс , числа масштабности и разветвленности вспомогательных функций, обеспечивающих выполнение главной функции, а также уровня применяемой техники и технологии.  

Выражение (I) обычно наз. исходной системой уравнений и неравенств, а выражение (II) - функционалом задачи линейного программирования или целевой функцией. Целевая функция является критерием оптимальности . Первая группа неравенств системы (I) позволяет учесть в расчете ограничения в существующих на начало планируемого периода мощностях топливодобывающих предприятий. Вторая группа неравенств учиты-  

К М. м. в з. и. относят след, разделы прикладной математики математическое программирование , теорию игр, теорию массового обслуживания , теорию расписании , теорию управления запасами и теорию износа п замены оборудования . М а т е м а т и ч. (или оптимальное) п р о г р а м м н р о в а н и о разрабатывает теорию и методы решения условных экстремальных адач, является осн. частью формального аппарата анализа разнообразных задач управления , планирования и проектирования. Играет особую роль в задачах оптимизации планирования нар. х-ва и управления нронз-вом. Задачи планирования экономики п управления техникой сводятся обычно к выбору совокупности чисел (т. н. параметров управления), обеспечивающих оптимум пек-рой функции (целевой функции пли показателя качества решения) при ограничениях вида равенств и неравенств, определяемых условиями работы системы . В зависимости от свойств функций, определяющих показатель качества и ограничения задачи, математич. программирование делится на линейное и нелинейное. Задачи, и к-рых целевая функция - линейная, а условия записываются в виде линейных равенств и неравенств, составляют предмет линейного программа-ронпии.ч. Задачи, в к-рых показатель качества решения или нек-рые из функций, определяющих ограничения, нелинейны, относятся к н е л и н е и н о м у п р о-г р а м м и [) о н а н п го. Нелинейное программирование , в свою очередь, делится на выпуклое и невынуклое программирование. В зависимости от того, являются лп исходные параметры, характеризующие условия задачи, вполне определёнными числами или случайными величинами , в математич. программировании различаются методы управления и планирования в условиях полной и неполной информации . Методы постановки и решения условных экстремальных задач , условия к-рых содержат случайные параметры, составляют предмет с т о х а с т и ч о с к о г о п р о г р а м м и р о в а-  

Цель модели - максимизация суммарного дисконтированного чистого дохода (до на-огов) для совокупности месторождений и газопроводных систем при заданных ехнологических и экономических ограничениях. Модель позволяет использовать льтернативные критерии - минимизации взвешенной суммы отклонений от заданного начения целевой функции (целевое программирование) расчеты могут проводиться ля заданного уровня инвестиций, для заданного уровня добычи, для заданного начения ДЧД.  

Успех такой деловой женщины зависит от того, насколько администрацией будутугаданы возможные поприща, способные дать удовлетворение трудом. Замечено, что женщины хорошо справляются с функциями, требующими общения с людьми, если же это еще и интеллектуальная деятельность -учительница, журналист, экскурсовод и т. п. - то высокая эффективность их труда и положительная ими самими оценка почти наверняка совпадут. В Японии женщинам редко удается получить инженерное, естественно-научное образование, особенно по современным, наиболее перспективным специальностям, тем не менее их включение в широко распростра-няющиеся подвижные целевые группы по решению нестандартных задач оказывается продуктивным. Изобретательность женского ума замечена давно и во всех странах. В Японии же, когда хотят привести яркое тому доказательство, вспоминают конкурс, объявленный известной фирмой "Адзи-но мото". Она предложила большой денежный приз за подсказку, как увеличить продажи, выпускаемой ею приправы, с виду похожей на соль и продаваемой в подобии солонок. Люди писали трактаты, привлекали всевозможные научные знания. Но победительницей стала домохозяйка, ответ которой уместился в одной строке "Сделать покрупнее дырки у солонки".  

Cтраница 2


Из таблицы видно, что для сравнительно близких оптимальных значений целевой функции (f (z) (при отклонениях порядка 1 %) количество изделий, подлежащих выпуску по этим оптимальным планам, по отдельным наименованиям колеблется в пределах нескольких сотен. Таким образом, эта задача является неустойчивой.  

В результате решения задачи линейного программирования находят оптимальное значение целевой функции (желательное сочетание изделий - максимальный доход), а также соответствующие этому оптимальному решению значения переменных: основных х - типы изделий; дополнительных zt - резервы по ограниченным ресурсам; двойственных Уг - мера дефицитности ресурсов; дополнительных двойственных У - - какую продукцию целесообразно включить в оптимальный план.  

Если множество решений является непустым, то оптимальное значение целевой функции может быть либо конечным, либо неограниченно большим. В случае когда оптимальное значение целевой функции конечно, оно соответствует экстремальной точке.  

Поскольку пространство решений может быть неограниченным, оптимальное значение целевой функции может также оказаться бесконечно большим.  

Все ограничения удовлетворяются, если и только если оптимальное значение целевой функции выпуклой задачи равно нулю. В противном случае минимальное значение явля-ется неограниченным, и должен быть найден крайний луч, с помощью которого строится нарушенное ограничение.  

На любой итерации t известна нижняя оценка х оптимального значения целевой функции. Значение х можно выбрать точно так же. Кроме того, имеется основной список задач, в котором каждой задаче соответствует определенное частичное решение.  

Теперь можно найти то решение, которое соответствует оптимальному значению целевой функции.  

В начале любой итерации t известна верхняя оценка х оптимального значения целевой функции. Значение х определяется общепринятым способом. Кроме того, задан основной список задач, содержащий некоторое подмножество Xij 1, определяющее частичный цикл, и подмножество значений с - -, принятых в результате пересмотра равными оо. Для вычисления нижней оценки оптимального значения целевой функции, соответствующей циклу, который является дополнением частичного цикла, можно применить тот же метод, что и в алгоритме задания маршрутов. С другой стороны, можно определять оптимальное решение задачи о назначениях, включив в эту задачу коэффициенты с -, принадлежащие строкам и столбцам, не связанным с подмножеством xti 1, которые входят в частичный цикл.  

В таких случаях существует бесконечно много планов, отвечающих оптимальному значению целевой функции. В многомерном случае говорят, что гиперплоскость постоянной прибыли параллельна гиперплоскости - границе одного из ресурсов.  

Теорема 4.1. Последовательность Q (Xh) сходится к оптимальному значению целевой функции детерминированной задачи, эквивалентной двухэтапной стохастической задаче линейного программирования. Последовательность лг / J содержит сходящуюся подпоследовательность. Каждая сходящаяся подпоследовательность из Xh сходится к оптимальному предварительному плану х двухэташюй стохастической задачи.  


Следует отметить, что очень часто в связи с ограничениями оптимальное значение целевой функции достигается не там, где ее поверхность имеет нулевой градиент. Нередко лучшее решение соответствует одной из границ области проектирования.  

В начале любой итерации t известна верхняя оценка х а оптимального значения целевой функции.  

В заключительной части настоящего раздела обсуждается вопрос о приближенных методах оценки оптимальных значений целевой функции при различных предположениях относительно структуры стохастической модели. В следующем разделе рассматривается другая формулировка двухшаговой стохастической задачи линейного программирования, допускающая переход к стандартной модели линейного программирования с сохранением размерности.  

Действительно, согласно (VI5), значение двойственной функции всегда меньше оптимального значения целевой функции. Отсюда расчет двойственной функции при любых значениях множителей Лагранжа дает нижнюю оценку данного варианта ветвления.  

Целевая функция представляет собой функцию с некоторыми переменными, от которых непосредственно зависит достижение оптимальности. Также она может выступать в качестве нескольких переменных, которые характеризуют тот или иной объект. Можно сказать, что, по сути, она показывает, как мы продвинулись в достижении поставленной задачи.

Примером таких функций может выступать расчет прочности и массы конструкции, мощности установки, объема выпуска продукции, стоимости перевозок и другие.

Целевая функция позволяет ответить на несколько вопросов:

Выгодно или нет то или иное событие;

В правильном ли направлении идет движение;

Насколько верно сделан выбор и т.д.

Если мы не имеем возможности влиять на параметры функции, то, можно сказать, что и сделать мы ничего не можем, разве что только проанализировать и все. Но чтобы быть в состоянии что-то изменить, обычно существуют изменяемые параметры функции. Главная задача - это изменить значения на те, при которых функция станет оптимальной.

Целевые функции не всегда могут быть представлены в виде формулы. Это может быть таблица, например. Также условие может быть в виде нескольких целевых функций. Например, если требуется обеспечить максимальную надежность, минимальные затраты и минимальную материалоемкость.

Задачи на оптимизацию должны иметь важнейшее исходное условие - целевую функцию. Если мы ее то можно считать, что оптимизации не существует. Иными словами, если нет цели, то и нет путей ее достижения, а тем более выгодных условий.

Задачи на оптимизацию бывают условными и безусловными. Первый вид предполагает ограничения, то есть определенные условия при постановке задачи. Второй вид состоит в том, чтобы отыскать максимум или при существующих параметрах. Зачастую такие задачи предполагают поиск минимума.

В классическом понимании оптимизации подбираются такие значения параметров, при которых целевая функция удовлетворяет желаемым результатам. Также ее можно обозначить как процесс подбора самого лучшего варианта из возможных. Например, выбрать лучшее распределение ресурсов, вариант конструкции и т.д.

Существует такое понятие, как неполная оптимизация. Она может образоваться по нескольким причинам. Например:

Число попавших в максимальную точку систем ограничено (уже установлена монополия или олигополия);

Нет монополии, но отсутствуют ресурсы (недостаток квалификации на каком-либо конкурсе);

Отсутствие самой а точнее «незнание» ее (мужчина мечтает о некой красивой женщине, но неизвестно, существует ли такая в природе) и т.д.

В условиях рыночных отношений управления сбытовой и производственной деятельностью фирм и предприятий основой принятия решений является информация о рынке, а обоснованность этого решения проверяется уже при выходе на рынок с соответствующим товаром или услугой. В таком случае отправной точкой является изучение потребительского спроса. Для нахождения решений устанавливается целевая функция потребления. Она показывает количество потребляемых благ и степень удовлетворения потребностей потребителя, а также зависимость между ними.



Статьи по теме