Вредные производственные факторы - промышленное освещение. Требования к рациональному освещению

Естественное освещение.

Все учебные помещения должны иметь естественное освещение в соответствии с гигиеническими требованиями к естественному, искусственному, совмещенному освещению жилых и общественных зданий.

Без естественного освещения допускается проектировать: снарядные, умывальные, душевые, туалеты при гимнастическом зале; душевые и туалеты персонала; кладовые и складские помещения, радиоузлы; кинофотолаборатории; книгохранилища; бойлерные, насосные водопровода и канализации; камеры вентиляционные и кондиционирования воздуха; узлы управления и другие помещения для установки и управления инженерным и технологическим оборудованием зданий; помещения для хранения дезинфекционных средств.

В учебных помещениях следует проектировать боковое естественное левостороннее освещение. При глубине учебных помещений более 6 м обязательно устройство правостороннего подсвета, высота которого должна быть не менее 2,2 м от пола.

Не допускается направление основного светового потока спереди и сзади от обучающихся.

В мастерских для трудового обучения, актовых и спортивных залах может применяться двустороннее боковое естественное освещение.

В помещениях общеобразовательных учреждений обеспечиваются нормированные значения коэффициента естественной освещенности (КЕО) в соответствии с гигиеническими требованиями к естественному, искусственному, совмещенному освещению жилых и общественных зданий.

В учебных помещениях при одностороннем боковом естественном освещении КЕО на рабочей поверхности парт в наиболее удаленной от окон точке помещения должен быть не менее 1,5%. При двустороннем боковом естественном освещении показатель КЕО вычисляется на средних рядах и должен составлять 1,5%.

Световой коэффициент (СК - отношение площади остекленной поверхности к площади пола) должен составлять не менее 1:6.

Окна учебных помещений должны быть ориентированы на южные, юго-восточные и восточные стороны горизонта. На северные стороны горизонта могут быть ориентированы окна кабинетов черчения, рисования, а также помещение кухни. Ориентация кабинетов информатики - на север, северо-восток.

Светопроемы учебных помещений в зависимости от климатической зоны оборудуют регулируемыми солнцезащитными устройствами (подъемно-поворотные жалюзи, тканевые шторы) с длиной не ниже уровня подоконника.

Рекомендуется использование штор из тканей светлых тонов, обладающих достаточной степенью светопропускания, хорошими светорассеивающими свойствами, которые не должны снижать уровень естественного освещения. Использование штор (занавесок), в том числе штор с ламбрекенами, из поливинилхлоридной пленки и других штор или устройств, ограничивающих естественную освещенность, не допускается.

В нерабочем состоянии шторы необходимо размещать в простенках между окнами.

Для рационального использования дневного света и равномерного освещения учебных помещений следует:

Не закрашивать оконные стекла;

Не расставлять на подоконниках цветы, их размещают в переносных цветочницах высотой 65 - 70 см от пола или подвесных кашпо в простенках между окнами;

Очистку и мытье стекол проводить по мере загрязнения, но не реже 2 раз в год (осенью и весной).

Продолжительность инсоляции в учебных помещениях и кабинетах должна быть непрерывной, по продолжительности не менее:

2,5 ч. в северной зоне (севернее 58 градусов с.ш.);

2,0 ч. в центральной зоне (58 - 48 градусов с.ш.);

1,5 ч. в южной зоне (южнее 48 градусов с.ш.).

Допускается отсутствие инсоляции в учебных кабинетах информатики, физики, химии, рисования и черчения, спортивно-тренажерных залах, помещениях пищеблока, актового зала, административно-хозяйственных помещениях.

Искусственное освещение

Во всех помещениях общеобразовательного учреждения обеспечиваются уровни искусственной освещенности в соответствии с гигиеническими требованиями к естественному, искусственному, совмещенному освещению жилых и общественных зданий.

В учебных помещениях система общего освещения обеспечивается потолочными светильниками. Предусматривается люминесцентное освещение с использованием ламп по спектру цветоизлучения: белый, тепло-белый, естественно-белый.

Светильники, используемые для искусственного освещения учебных помещений, должны обеспечивать благоприятное распределение яркости в поле зрения, что лимитируется показателем дискомфорта (Мт). Показатель дискомфорта осветительной установки общего освещения для любого рабочего места в классе не должен превышать 40 единиц.

Не следует использовать в одном помещении люминесцентные лампы и лампы накаливания для общего освещения.

В учебных кабинетах, аудиториях, лабораториях уровни освещенности должны соответствовать следующим нормам: на рабочих столах - 300 - 500 лк, в кабинетах технического черчения и рисования - 500 лк, в кабинетах информатики на столах - 300 - 500 лк, на классной доске - 300 - 500 лк, в актовых и спортивных залах (на полу) - 200 лк, в рекреациях (на полу) - 150 лк.

При использовании компьютерной техники и необходимости сочетать восприятие информации с экрана и ведение записи в тетради освещенность на столах обучающихся должна быть не ниже 300 лк.

В учебных помещениях следует применять систему общего освещения. Светильники с люминесцентными лампами располагаются параллельно светонесущей стене на расстоянии 1,2 м от наружной стены и 1,5 м от внутренней.

Классная доска, не обладающая собственным свечением, оборудуется местным освещением - софитами, предназначенными для освещения классных досок.

При проектировании системы искусственного освещения для учебных помещений необходимо предусмотреть раздельное включение линий светильников.

Для рационального использования искусственного света и равномерного освещения учебных помещений необходимо использовать отделочные материалы и краски, создающие матовую поверхность с коэффициентами отражения: для потолка - 0,7 - 0,9; для стен - 0,5 - 0,7; для пола - 0,4 - 0,5; для мебели и парт - 0,45; для классных досок - 0,1 - 0,2.

Рекомендуется использовать следующие цвета красок: для потолков - белый, для стен учебных помещений - светлые тона желтого, бежевого, розового, зеленого, голубого; для мебели (шкафы, парты) - цвет натурального дерева или светло-зеленый; для классных досок - темно-зеленый, темно-коричневый; для дверей, оконных рам - белый.

Необходимо проводить чистку осветительной арматуры светильников по мере загрязнения, но не реже 2 раз в год и своевременно заменять перегоревшие лампы.

Неисправные, перегоревшие люминесцентные лампы собираются в контейнер в специально выделенном помещении и направляют на утилизацию в соответствии с действующими нормативными документами.

Искусственное освещение может быть общим, местным или комбинированным.

Гигиеническая оценка искусственного освещения включает: определение уровня освещенности необходимой площади, характеристику источника света и арматуры.

Освещенность - отношение светового потока, падающего на поверхность, к площади этой поверхности. Выражают освещенность в люксах (лк).

При расчете освещенности учитывают: сложность технологического процесса и, следовательно, степень напряжения зрения; длительность и напряженность зрительной работы; контрастность освещения рабочего места и окружающего фона.

Источники света - лампы накаливания и люминесцентные лампы. Их гигиеническая характеристика различна и определяется следующими свойствами ламп:

Долей энергии, превращаемой лампой в световую;

Тепловым излучением;

Спектральной характеристикой видимого излучения;

Устойчивостью светового потока.

Электрические лампы накаливания - это источники света с излучателем в виде нити или спирали из вольфрама, накаливаемые электрическим током до 2500-3300 оС. Чем выше температура накала, тем большая часть излучаемой энергии воспринимается в виде света, т.е. тем более экономична лампа. Однако с повышением температуры накала вольфрама повышается и скорость его испарения, что сокращает срок службы лампы. В настоящее время, чтобы уменьшить скорость испарения вольфрама и сделать лампы более экономичными, их наполняют криптоноксеноновой смесью. Поскольку наличие инертного газа вызывает дополнительные потери мощности, лампы малой мощности (40 Вт и менее), имеющие наименьший коэффициент полезного действия, изготавливают пустотными (вакуумными).

Лампы накаливания имеют целый ряд недостатков:

Малый коэффициент полезного действия;

Сильное тепловое излучение;

Малую долю энергии, превращаемую в световую - (вакуумные около 7 %, криптоноксеноновые - до13 %);

Нити ламп обладают чрезвычайной яркостью для глаз;

В отличие от дневного света в видимом излучении преобладают желтые и красные части спектра, что затрудняет цветовосприятие и цветоразличение;

В световом потоке почти отсутствуют ультрафиолетовые лучи, свойственные солнечному свету.

Лампы люминесцентные характеризуются двойным преобразованием энергии: электрическая энергия превращается в энергию ультрафиолетового излучения, а энергия ультрафиолетового излучения - в видимое свечение люминесцирующих веществ.

Люминесцентная лампа представляет собой запаянную стеклянную трубку, наполненную парами ртути и аргоном. На внутреннюю поверхность трубки нанесено мелкокристаллическое люминесцентное вещество. В оба конца трубки впаяны электроды из вольфрамовых спиралей. Электрический ток, проходя сквозь газовую среду между электродами, вызывает свечение паров ртути и образование УФЛ. Воздействуя на люминофор, ультрафиолетовые лучи вызывают его свечение.

В зависимости от типа люминофора и пропорции смеси изготавливают лампы дневного света (ДС), белого света (БС), холодного белого света (ХБС) и теплого белого света (ТБС). Люминесцентные лампы характеризуются незначительным излучением в красной части спектра, что приближает их излучение к дневному свету, но вместе с тем искажает передачу красных и оранжевых тонов. Лампы БС и ТБС дают менее интенсивное излучение в синефиолетовой области, чем лампы ДС. Поэтому лампы дневного света применяются для освещения помещений, в которых требуется тонкое различие цветов и оттенков.

Энергия, превращаемая в световую, в люминесцентных лампах в 3-4 раза больше, чем ламп накаливания, а тепловое излучение незначительно. Срок службы люминесцентных ламп в 3 раза больше, чем ламп накаливания.

Однако серьезным недостатком люминесцентных ламп является колебание светового потока - стробоскопический эффект. Он представляет собой множественные мнимые изображения движущихся предметов, что вызывает утомление зрения, искаженное восприятие движущихся предметов и может стать причиной производственного травматизма. Для предотвращения стробоскопического эффекта необходимо включать несколько близкорасположенных люминесцентных ламп в разные фазы трехфазной электрической сети.

Приведенные различия в гигиенической оценке источников света учитываются при их выборе для освещения помещений различного назначения.

Для освещения производственных помещений рекомендуется применять преимущественно лампы накаливания. В складских помещениях следует использовать светильники с люминесцентными лампами и с лампами накаливания. В кладовых тары лампы накаливания в светильниках должны быть покрыты силикатным стеклом.

Яркость светящейся поверхности люминесцентных ламп незначительна, но для профилактики утомления зрения их, также как лампы накаливания, заключают в специальную арматуру.

Арматура - это устройство, предназначенное для рационального перераспределения светового потока, защиты глаз от чрезмерной яркости, предохранения источника света от механических повреждений, а окружающей среды - от осколков при возможном разрушении лампы.

Важной гигиенической характеристикой арматуры является светораспределение, т.е. распределение освещенности в пространстве. При выборе светильника, кроме светораспределения, учитывается степень защиты источника света от воздействия окружающей среды, что особенно важно в сырых, пыльных помещениях, помещениях с химически активной средой и др.

Светильники (источники света в арматуре), в зависимости от распределения света, подразделяются на четыре группы:

Светильники прямого света - направляют на освещаемую поверхность около 90 % света, но на них могут появляться резкие тени и блики.

Светильники преимущественно отраженного света - нижняя сферическая часть их изготавливается из молочного стекла, а верхняя - из матового стекла. При этом около 65-70 % светового потока направляются в верхнюю часть светильника. Такие светильники применяются в тех помещениях, где требуется рассеянное освещение.

Светильники отраженного света - направляют весь световой поток к потолку. Лучи света отражаются под разными углами от потолка и верхней части стен, вследствие чего тени почти полностью исчезают.

Светильники рассеянного света - создают вполне удовлетворительные условия освещения: слепящее действие их незначительно, на освещаемых поверхностях не образуется резких теней. Однако они, как и светильники отраженного света, поглощают значительную часть света.

Запрещается применять светильники с отражателями или рассеивателями из горючих материалов. В охлаждаемых камерах пищевых продуктов следует применять светильники, разрешенные для низких температур. Светильники должны иметь защитные плафоны с металлической сеткой для предохранения от повреждения и попадания стекла на продукты. Важным гигиеническим требованием является своевременная очистка светильников, так как загрязненная арматура снижает освещенность рабочих мест на 25-30 %.

На пищевых предприятиях проектируется естественное и искусственное освещение в соответствии с требованиями СНиП «Естественное и искусственное освещение. Нормы проектирования».

Санитарные требования к освещению предприятий общественного питания. Естественное и искусственное освещение во всех производственных, складских, санитарно-бытовых и административно-хозяйственных помещениях должны соответствовать санитарным правилам. При этом следует максимально использовать естественное освещение. Показатели освещенности для производственных помещений должны соответствовать установленным нормам.

Для холодного цеха и помещений для приготовления крема и отделки тортов и пирожных кондитерского цеха предусматривается северо-западная ориентация, а также защита от инсоляции (жалюзи, специальные стекла и устройства, отражающие тепловое излучение).

Для освещения производственных помещений и складов необходимо применять светильники во влагозащитном исполнении. На рабочих местах не должна создаваться блескость. Люминесцентные светильники, размещаемые в помещениях с вращающимся оборудованием (универсальные приводы, тестомесы, кремовзбивалки, дисковые ножи), должны иметь лампы, устанавливаемые в противофазе. Светильники нельзя размещать над плитами, технологическим оборудованием, разделочными столами. При необходимости рабочие места оборудуются дополнительными источниками освещения. Осветительные приборы должны иметь защитную арматуру.

Остекленные поверхности окон и проемов, осветительные приборы и арматура необходимо содержать в чистоте и очищать по мере загрязнения.

Еще по теме Гигиенические требования к искусственному освещению:

  1. Гигиенические требования к естественному и искусственному освещению аптек, складов мелкооптовой торговли фармацевтической продукции.

В статье даны принципы и условия работы зрения, рассказывается о гигиенических требованиях к естественному и искусственному освещению, даны рекомендации по защите зрения работников от вредных факторов.

Подавляющее большинство работ, производимых на промышленных предприятиях, осуществляется под контролем зрения; наблюдение за ходом процесса, за работой механизмов и аппаратов, проведение разнообразных операций немыслимы без участия зрения. Поэтому при выполнении почти любой работы орган зрения человека имеет ту или иную степень напряжения и, как и другие органы и системы, при определенной величине этого напряжения и определенных условиях способен утомляться; в свою очередь, утомление органа зрения приводит к общему утомлению организма, так как последний мобилизует имеющиеся у него компенсаторные возможности для напряжения зрения, на что затрачивает дополнительную энергию. Напряжение органа зрения и работоспособность зависят от характера выполняемой работы и от степени и качества освещения на рабочем месте и участке в целом.


Принципы и условия работы органа зрения человека


Орган зрения состоит из глаз, зрительных нервов и зрительных центров головного мозга. Глаз - воспринимающий аппарат органа зрения, построен по типу фотоаппарата. Он состоит из сферической камеры (глазного, яблока), в которой имеется круглое отверстие - зрачок, меняющий свой диаметр, как диафрагма. На задней стенке камеры находятся светочувствительные окончания зрительного нерва. Глазное яблоко заполнено прозрачным стекловидным телом, а перед зрачком расположен хрусталик, выполняющий роль линзы.
Глазное яблоко заключено в белковую оболочку, которая в передней части переходит в прозрачную роговицу. Световые лучи через зрачок попадают на хрусталик, проходят через стекловидное тело и проецируются на задней стенке. Под действием света в светочувствительных элементах возникают импульсы, поступающие по зрительному нерву в зрительные отделы головного мозга, где они преобразуются в зрительные ощущения. Четкое различие предметов, расположенных на близком или дальнем расстоянии, достигается изменением кривизны хрусталика. Зрачок суживается при большой освещенности, ограждая глаз от ослепления, и расширяется при пониженном освещении, помогая рассмотреть слабо освещенные предметы. При слишком слабой освещенности зрачок, расширяясь до максимального предела, далее не реагирует, и, следовательно, световых лучей становится недостаточно для нормального раздражения зрительного нерва; окружающие предметы в таких случаях воспринимаются слабо, с большим напряжением органа зрения в целом. При чрезмерно сильном освещении зрачок сокращается до минимальных размеров, и дальнейшее усиление освещения приводит к проникновению в глазное яблоко излишнего количества световых лучей и, следовательно, к чрезмерному раздражению зрительного нерва, что субъективно ощущается в виде слепящего действия, иногда вплоть до болевых ощущений (рези в глазах).
Работоспособность глаза характеризуется рядом показателей физиологических функций:
острота зрения - способность глаза видеть и различать мельчайшие предметы, детали, форму и очертания;
контрастная чувствительность - способность глаза различать близкие друг к другу по степени яркости поверхности;
цветовое зрение - способность глаза различать цвета и даже оттенки;
устойчивость ясного видения - способность четко видеть и различать мелкие предметы, детали, формы и очертания на протяжении определенного времени;
скорость зрительного восприятия - способность глаза четко воспринимать мелкие предметы, детали, формы и очертания за минимальный период времени.
Все эти показатели в той или иной степени зависят от степени освещенности и качества освещения; лучшие показатели работоспособности глаза получаются при нормальном естественном освещении. Искусственное освещение в большей степени отражается на цветовом зрении, снижая и искажая цветоразличение, что связано с различием спектрального состава искусственного и естественного, света; солнечный или даже рассеянный естественный свет разнообразен по спектральному составу, включает в себя ультрафиолетовое, полную гамму видимого и инфракрасное излучение, в то время как искусственный свет ограничен по спектру.


Общие гигиенические требования к освещению


Одну из основных ролей в рациональном освещении играет уровень освещенности, измеряемый в люксах (люкс - единица освещенности, равная световому потоку в 1 лм (люмен), падающему на освещаемую поверхность в 1 м 2). Чем выше точность зрительной работы, меньше размеры рассматриваемых предметов или их отдельных деталей, их контрастность с фоном, необходимая быстрота их восприятия (при движении), тем больший уровень освещенности должен быть. Эта зависимость положена в основу составления санитарных норм освещения, в которых для каждого вида зрительных работ, условно разделенных на разряды и подразряды, определен минимальный уровень освещенности. При этом регламентируются также качественная характеристика осветительных установок, показатель ослепленности, коэффициент пульсации при использовании газоразрядных ламп и др.

Равномерность освещения также имеет существенное гигиеническое значение. При резкой разнице в уровне освещенности ограниченного рабочего места или тем более рассматриваемого предмета и окружающего пространства в случаях перевода взгляда со светлого на темный участок и наоборот глазу приходится каждый раз приспосабливаться к новым условиям освещенности, такое приспособление к разным условиям освещенности называется адаптацией. Так как адаптация как в ту, так и в другую сторону происходит постепенно, то каждый раз при переводе взгляда с темного на светлый участок и наоборот определенное время работоспособность глаза бывает снижена. Чтобы избежать этого, необходимо обеспечивать более или менее равномерную освещенность во всем рабочем помещении, а не ограничиваться освещенностью только рабочих мест. Исследования в этой области показывают, что, для того чтобы избежать значительной и длительной переадаптации, надо иметь общую освещенность. в цехе не менее 10% суммарной максимальной освещенности на рабочем месте.
В целях предупреждения частой и значительной переадаптации, а также слепящего действия яркого света самого источника освещения необходимо защищать его предупреждая прямое попадание пучка света в глаза работающих и направляя его на рассматриваемую поверхность. Это особенно важно соблюдать при оборудовании местного освещения, когда источник света находится в непосредственной близости к глазам рабочего. Эта же цель преследуется рациональным размещением светильников по отношению к рабочему. Источники света следует размещать так, чтобы они сами или отраженные от блестящих поверхностей лучи не слепили глаза, чтобы при выполнении работы голова, руки или другие части тела, оборудование или сами изделия не затеняли рассматриваемую поверхность.
Рациональное размещение источников света приобретает важное значение при рассмотрении рельефных мелких деталей, при котором соответствующее направление пучка света может способствовать повышению работоспособности глаза, увеличивая контрастность рассматриваемых предметов за счет их собственных теней.
Наконец, важное гигиеническое значение имеет рациональный выбор источников света, особенно там, где требуется тонкое различение цветов. Для большинства видов работ наиболее рациональным является естественный дневной свет, поэтому там, где есть такая возможность, ее надо максимально использовать. Кроме того, естественный свет, в отличие от искусственного, обладает биологической активностью; он активизирует биохимические процессы в организме, тонизирует его, убивает патогенные микробы. При недостаточной освещенности естественным светом целесообразно пользоваться смешанным освещением - естественный плюс искусственный. Выбор источников искусственного света определяется характером зрительных работ: например, для различения цветов лучше использовать лампы дневного света, для выявления дефектов металла или металлических изделий - сочетание общего освещения (ртутными лампами) и местного (лампами накаливания).
Естественное освещение
Естественное освещение в производственных помещениях создается за счет проникновения дневного света через оконные и другие остекленные проемы, а также через специальные сооружения в кровле зданий - фонари. В последнее время для этих целей разработаны и на некоторых предприятиях применяются специальные светопрозрачные покрытия в кровле здания; они могут быть в виде стеклоблоков, светопрозрачных колпаков и других типов. Фонари и светопрозрачные покрытия в кровле применяются главным образом в многопролетных зданиях, где с помощью бокового освещения удается осветить лишь прилегающие к наружным стенам участки производства.
Учитывая, что естественное освещение во многом зависит от разнообразных условий - времени года и суток, погоды - и, как правило, колеблется в весьма широких пределах, об освещенности внутри зданий обычно судят не по его величине, выраженной в люксах, а по отношению освещенности внутри здания к наружной освещенности (освещенности горизонтальной поверхности от рассеянного света небосвода). Эта величина, выраженная в процентах, является постоянной для данного помещения и носит название коэффициента естественного освещения (к. е. о.). По этому же коэффициенту нормируется естественное освещение; в зависимости от характера и точности зрительных работ предусматривается к.е.о. от 0,1 до 10%.
Для поддержания хорошей светопроницаемости световых проемов последние необходимо систематически очищать, особенно в цехах с выделением пыли, копоти, паров некоторых веществ. В случае отсутствия своевременной очистки остекление со временем настолько сильно загрязняется, особенно копотью, что нередко бывает весьма трудно его. отмыть; в подобных случаях его следует сменить. Для удобства очистки или смены остекления при строительстве промышленных зданий предусматриваются специальные устройства для свободного доступа ко всем остекленным или светопрозрачным поверхностям как снаружи, так и изнутри здания (мостики, передвижные площадки, люльки и т. п.).
Для защиты от слепящего действия прямых солнечных лучей или их отражения от блестящих деталей целесообразно остекление световых проемов покрывать тонким слоем белой краски или простое прозрачное стекло заменять матовым. Однако при этом следует учитывать, что такое светорассеивающее покрытие в определенной степени снизит коэффициент естественного освещения.
Искусственное освещение
Искусственное освещение по своему назначению делится на две системы: общее, предназначенное для освещения всего рабочего помещения, и комбинированное, когда к общему освещению добавляется местное освещение, концентрирующее световой поток непосредственно на рабочем месте. Местное освещение, как правило, в промышленности не применяется.
Искусственное освещение в современных промышленных предприятиях создается разнообразными электрическими источниками света. Наиболее старыми из них и весьма распространенными до недавнего времени являются лампы накаливания. Превращение электрической энергии в световую происходит в них за счет нагревания нити накала до температуры свечения. В настоящее время разработан новый тип лампы накаливания - кварцевые галогенные лампы, представляющие собой кварцевую трубку, внутри которой находится нить накала. Они отличаются от обычных большей световой отдачей, более широким спектром и стабильностью светового потока.
В последние годы широкое распространение в промышленности получили газоразрядные люминесцентные лампы, в которых электрическая энергия непосредственно переходит в световое излучение за счет свечения специальных веществ - люминофоров.
В зависимости от состава люминофора получается различная цветность свечения; то есть различный спектр света. Это качество дает возможность создавать нужный спектр в зависимости от характера выполняемой работы. В настоящее время промышленность выпускает люминесцентные лампы нескольких типов: ЛБ (белого света), ЛД (дневного света) ЛХБ (холодного белого света) и ЛТБ (теплого белого света), причем три последних выпускаются в двух модификациях - обычные и с улучшенной цветностью (ЛД2, ЛХБЦ и ЛТБЦ). Газоразрядные лампы имеют различную форму: трубчатые, кольцевые, у-образные, волнообразные и др.
Люминесцентные лампы имеют ряд преимуществ перед лампами накаливания: они более экономичны, имеют большую световую отдачу, более долговечны, меньше нагреваются, разнообразны по спектру. Вместе с тем они имеют и свои недостатки, среди которых наиболее существенным являются колебания светового потока, так как газоразрядные лампы не обладают достаточным послесвечением и повторяют колебания переменного тока электросети. Колебания светового потока вызывают так называемый стробоскопический эффект, то есть искажение зрительного восприятия движущихся или вращающихся предметов (рябит в глазах), впечатление неподвижности или вращения в другом направлении. При включении рядом расположенных люминесцентных ламп в разные фазы электросети стробоскопический эффект значительно снижается, а при включении в сеть постоянного тока полностью исчезает.
В промышленности используются также люминесцентные ртутно-кварцевые лампы (ДРЛ), состоящие из стеклянной колбы, покрытой изнутри люминофором, и ртутно-кварцевой трубки, размещенной в колбе. Под влиянием ультрафиолетового излучения, возникающего в ртутно-кварцевой трубке, светится люминофор, придавая свету определенный синеватый оттенок, искажая истинные цвета. Для устранения этого недостатка в состав люминофора вводятся специальные компоненты, которые частично исправляют цветность; эти лампы получили название ламп ДРЛ с исправленной цветностью. Именно такие лампы целесообразно применять для освещения рабочих помещений. Учитывая, что лампы ДРЛ обладают большой мощностью и дают интенсивный световой поток, их обычно используют, только для общего освещения высоких производственных помещений.
Учитывая, что и лампы накаливания и люминесцентные лампы не имеют в своем спектре ультрафиолетовых лучей, обладающих большой биологической активностью, в помещениях без естественного света или с недостаточным по биологическому действию естественным светом применяют установки искусственного ультрафиолетового облучения. Это осуществляется при помощи так называемых эритемных ламп, которые по форме аналогичны обычным люминесцентным лампам, но излучают преимущественно ультрафиолетовые лучи. Такие лампы применяются либо в системе общего освещения непосредственно в рабочих помещениях, либо в специальных помещениях, предназначенных для кратковременного, но более интенсивного облучении рабочих после смены,- в фотариях.
Для рационального использования светового потока источники искусственного освещения заключаются в специальную арматуру. Источник света с осветительной арматурой называется светильником. Светильники делятся на три основных типа: прямого света, отраженного света и рассеянного света.
К светильникам прямого света относятся зеркальные и эмалированные глубоко излучатели, в которых металлической отражающей арматурой основной световой поток направляется в одну сторону (чаще вниз или слегка в сторону), они используются для общего освещения. Светильник прямого направленного света в виде металлического отражателя применяется как для общего, так и для местного освещения. К светильникам рассеянного света относится в основном осветительная арматура из молочного или матированного стекла или аналогичных пластмасс. Они применяются для общего освещения при высоте подвеса не более 4 - 5 м в помещениях со светлой окраской стен и потолков и без значительного выделения пыли и копоти.
Для освещения рабочего помещения отраженным светом источники света закрываются снизу отражателем, вследствие чего основной световой поток направляется на потолок или другую плоскость, окрашенную в белый цвет, от которого отражается и равномерно освещает помещение. Такой тип используется для общего освещения и, как правило, для особых зрительных работ (со значительной блесткостью); несмотря на гигиеническую целесообразность, он применяется редко, так как для создания необходимой освещенности требуются большие мощности, чем при прямом свете. Разнообразные светильники созданы для люминесцентного освещения.
В некоторых производствах, где имеет место выделение в воздух рабочих помещений паров или пылей легковоспламеняющихся или взрывоопасных веществ, применяются взрывобезопасные светильники. Они герметично закрывают источник света и тем самым предохраняют его от контакта с воспламеняющимися или взрывоопасными веществами. Для освещения вытяжных шкафов, боксов или других ограниченных пространств, где производятся работы с такими веществами, используется прожекторное освещение. Прожектора устанавливаются за пределами этих пространств (иногда даже за пределами цеха, снаружи), а световой поток от них через остекленное окно или другой остекленный проем направляется в рабочее пространство, освещая его.
Все светильники искусственного освещения по мере их загрязнения пылью, копотью, конденсатом различных испаряющихся веществ и т. п. значительно снижают световой поток и освещенность. Поэтому необходимо систематически протирать лампы и арматуру, а также своевременно заменять перегоревшие лампы (обязательно такими же по мощности и по качеству). Для этого в каждом цехе надо иметь приспособления или специальные устройства для свободного и безопасного доступа к светильникам, особенно общего освещения, размещенным в верхней зоне (телескопические вышки, выдвижные лестницы, устойчивые стремянки и т. п.).

Теги: Охрана труда, работник, вредные производственные факторы, промышленное освещение, зрение, гигиенические требования, освещение, люминесцентные лампы

Искусственное освещение должно соответствовать назначению помещения, быть достаточным, регулируемым и безопасным, не оказывать сле пящего действия и другого неблагоприятного влияния на человека и внутреннюю среду помещений.

Общее искусственное освещение должно быть предусмотрено во всех, без исключения помещениях. Для освещения отдельных функциональных зон и рабочих мест, кроме того устраивается местное освещение.

Искусственное освещение помещений стационаров осуществляется люминисцентными лампами и лампами накаливания. Рекомендуемые освещенность, источник света, тип лампы принимается в соответствии с пособием к СНиП 2,08-89 по проектированию лечебно-профилактических учреждений. Предусматриваемые для установки и применяемые люминисцентные аппараты с особо низким уровнем шума.

Светильники общего освещения, размещаемые на потолках, должны быть со сплошными (закрытыми) рассеивателями.

Для освещения палат (кроме детских и психиатрических отделений) следует применять настенные комбинированные светильники (общего и местного освещения), устанавливаемые у каждой койки на высоте 1,7 м от уровня пола.

В каждой палате, кроме того, должен быть специальный светильник ночного освещения, устанавливаемый в нише около двери на высоте 0,3 м от пола (в детских и психиатрических отделениях светильники устанавливаются в нишах над дверными проемами на высоте 2,2 м от уровня пола).

Во врачебных смотровых кабинетах необходимо устанавливать настенные светильники для осмотра больного.

Работами ряда авторов обоснован ряд гигиенических и экономических преимуществ люминисцентного освещения по сравнению с лампами накаливания. По влиянию на работоспособность, цветовосприятие и утомление зрительного анализатора лампы накаливания менее совершенны, чем люминисцентные. Поэтому при выборе источников света следует отдавать предпочтение светильникам с люминисцентными лампами типа ЛХБЦ (холодного белого цвета с исправленной цветностью излучения) и др. В противошоковых, операционных, предоперационных, перевязочных, родовых, реанимационных устанавливают светильники закрытого типа со сплошными рассеивателями типа ЛПП-01, Арт-352, в кабинетах врачей-специалистов закрытые неполностью (Арт-353).

3.3.2. Исследование искусственного освещения.

Руководствуясь изложенным выше, инструментальному исследованию искусственной освещенности должно предшествовать описание осветительной системы, типа светильников, их размещения в обследуемом помещении, источника света; необходимо отметить цветность света, наличие или отсутствие пульсаций светового потока, определить высоту подвеса светильников, а затем замерить освещенность на рабочем месте объективным люксметром или через удельную мощность и пр.

Таблица 9.

Нормы искусственного освещения (извлечение из СНиП-П-4-79 «Естественное и искусственное освещение»).

Наименование помещений

Освещенность в люксах

люминисцентные лампы

лампы накаливания

Операционные в больницах

Родовые; реанимационные, перевязочные

Кабинеты врачей

Кабинеты врачей в поликлинике

Диагностические лаборатории

Палаты больниц и санаториев

Главные коридоры в больницах

Расчетный способ определения искусственной освещенности основан на подсчете суммарной мощности всех ламп в помещении и определении удельной мощности ламп (в Вт/м 2). Эту величину умножают на коэффициент, показывающий какую освещенность (в лк) дает удельная мощность, равная 1 Вт/ м 2 . Значение ее для помещений с площадью не более 50 м 2 при напряжении в сети 220 в для ламп накаливания 180 Вт и более - 2,5; для ламп накаливания мощностью 100 Вт равна 2,0; для люминисцентных ламп - 1,25.

Пример: Палата площадью 33 м 2 освещается двумя светильниками мощностью 150 Вт (лампы накаливания). Удельная мощность равна 150 Вт х 2: 30 = 10 Вт/м 2 . Освещенность равна 10 х 2,5 = 25 лк, что значительно ниже гигиенической нормы.

САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ.

    Дать описательную характеристику естественному и искусственному освещению учебной аудитории кафедры.

    Провести исследование и оценить естественную освещенность в учебной комнате по следующим геометрическим (графическим) показателям: световой коэффициент (СК), угол падения, угол отверстия на рабочем месте и коэффициент глубины заложения.

    Ознакомиться с устройством и освоить правила работы с объективным люксметром.

    Определить и оценить абсолютную освещенность и рассчитать коэффициент естественной освещенности (КЕО) в учебной аудитории и на рабочих местах.

    Оценить инсоляционный режим в учебной аудитории.

    Рассчитать и оценить искусственную освещенность в учебной аудитории через удельную мощность. При расчете воспользуйтесь таблицей номер 36 на стр.110 «Руководства к практическим занятиям по гигиене» Ю.П.Пивоварова с соавт., освещенность аудитории, учебных кабинетов и лабораторий согласно СНиП-П-4-79 «естественное и искусственное освещение» на уровне 0,8 м при лампах накаливания должна быть равна 150 лк, при люминисцентных лампах - 300 лк.

    Результаты всех выполненных исследований оформить протоколом (по приведенной ниже форме) с заключением и рекомендациями по оптимизации инсоляционного режима, естественной и искусственной освещенности в обследуемом помещении учебной аудитории.

Заключение получают путем сравнения полученных результатов с гигиеническими нормативами, используемыми для оценки освещенности помещений.

Решение ситуационных задач по теме «Оценка инсоляционного режима, естественного и искусственного освещения больниц».

ПРОТОКОЛ

Исследования и гигиенической оценки освещенности

(наименование помещения)

Дата и время исследования

1. ИСССЛЕДОВАНИЕ ЕСТЕСТВЕННОЙ ОСВЕЩЕННОСТИ

1. Помещение на этаже, его ориентация, размеры помещения, отделка,

цвет стен, потолка

2. Размеры окон, их число, расположение

общая площадь застекленных частей окон, м 2

расстояние верхнего края от потолка см, высота подоконника

см, ширина простенков, м

вид оконных переплетов. Состояние стекол

3. Световой коэффициент, угол падения,

отверстия глубина заложения, КЕО%

освещенность дневным светом

4. Результаты оценки инсоляционного режима

2. ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ

(указать какое)

1. Его организация: общее, местное, комбинированное

Тип светильников (прямого, рассеянного, отраженного)

количество, размещение

высота подвеса, мощность ламп Вт, общая мощность,

состояние арматуры, защитные приспособления (есть, нет)

2. Яркость по прибору нит, по формуле

Освещенность в разных точках (колебания)

равномерная нет

ЗАКЛЮЧЕНИЕ

КОНТРОЛЬНЫЕ ВОПРОСЫ

Гигиеническая оценка естественного и искусственного освещения помещений.

Цель занятия:

1. Изучить влияние естественного и искусственного освещения на организм человека и санитарные условия жизни.

2. Ознакомить студентов с гигиеническими требованиями к естественному и искусственному освещению помещений образовательных, лечебно-профилактических учреждений, методам его оценки и гигиенического нормирования.

3. Обучить принципам разработки профилактических мероприятий и рекомендаций по улучшению освещения помещений.

Контрольные вопросы

1. Значение освещения для жизнедеятельности и здоровья человека.

2. Основные зрительные функции и их зависимость от освещения

3. От каких факторов зависит естественное освещение в помещении?

4. Основные световые понятия и един ицы

5. Гигиенические требования к естественному освещению помещений.

6. Методы гигиенической оценки естественного освещения помещений.

7. Устройство и принцип работы люксметра.

8. Гигиенические требования к искусственному освещению помещений.

9. Методы гигиенической оценки искусственного освещения помещений.

10. Гигиеническая характеристика различных источников света и светильников.

Свет является жизненно важным фактором внешней среды. Он оказывает влияние на многие физиологические процессы организма человека: является специфическим раздражителем органа зрения, активизирует процессы обмена веществ, повышает тонус ЦНС, усиливает процессы роста и развития организма, повышает сопротивляемость к неблагоприятным факторам внешней среды, устанавливает ритм физиологических функций организма. Высокий уровень освещённости позволяет выполнить зрительную работу с меньшим утомлением и лучшими результатами и, напротив, низкое освещение приводит к быстрому утомлению, к тормозным явлениям в ЦНС, к нарушению функций зрения и др. неблагоприятным сдвигам в организме.

Основными зрительными функциями являются острота зрения, контрастная чувствительность, быстрота различения, а также устойчивость ясного видения, цветоразличение, световая и темновая адаптация, аккомодация, критическая частота мельканий и др.

Острота зрения – максимальная способность глаза различать наименьшие детали объекта (точки, черточки, кружки) как отдельные друг от друга. Она определяется наименьшим углом, под которым две смежные точки видны как раздельные. Условно считают, что острота зрения равна единице, если разрешающий угол равен 1 минуте, что соответствует условиям рассматривания детали размером 1,45 мм на расстоянии 5 м. С увеличением освещенности до 100–150 лк она быстро возрастает, при дальнейшем её увеличении этот рост замедляется.

Контрастная чувствительность – способность глаза различать минимальную разность яркостей рассматриваемого объекта (детали) и фона или двух смежных поверхностей. Установлена зависимость контрастной чувствительности от условий освещения рассматриваемого объекта и яркости, к которой глаз предельно

адаптировался. Оптимальная яркость рабочих поверхностей составляет несколько сотен кд/м2 (≈500), а рассматриваемых объектов – значительно выше. Если рабочая поверхность отражает не более 30-40 % падающего света, то контрастная чувствительность наиболее высока при освещенностях 1000–2500 лк.

Быстрота различения или скорость зрительного восприятия – наименьшее время, необходимое для различения деталей объекта. Она заметно возрастает при увеличении освещенности до 100-150 лк, затем её рост замедляется (но не заканчивается) до 1000 лк и выше.

Все три перечисленные функции тесно взаимосвязаны и определяют интегральную функцию зрительного анализатора. Они же используются в гигиеническом нормировании освещения.

Для зрительной работы существенное значение имеет не только количественная сторона освещения – величина освещённости, но и качество освещения, т.е. равномерность освещения на рабочей поверхности и окружающем пространстве (распределение яркостей), контраст между рассматриваемым предметом и фоном, наличие блескости, направленность и спектральный состав светового потока. Эти закономерности послужили основанием гигиенических требований к нормированию освещённости и организации рационального освещения в помещениях различного типа в зависимости от выполняемой работы с различным уровнем точности.

Освещённость – величина не постоянная, зависит от многих факторов: географической широты местности, времени суток и года, рельефа местности, состояния погоды (степени облачности), а также от особенностей планировки здания, ориентации, формы окон, характера и чистоты оконных стекол, окраски стен, потолка и др. Например, тюлевые занавески поглощают до 40 %, портьеры – 80% падающего света, загрязнённые окна – до 50%, а промёрзшие – 80% света.

Основные световые понятия и единицы

Лучистая энергия, вызывающая световое ощущение, называется оптическим излучением, а мощность такого излучения – световым потоком.

Видимая часть солнечной радиации у поверхности земли составляет 40 % и в спектре её электро-магнитного излучения занимает узкий диапазон волн (от 400 до 760 нм). Глазнаиболее

чувствителен к средней части видимого спектра и имеет максимальную чувствительность при длине волны 555 нм (переходный желто-зеленый участок спектра). Эта чувствительность принята за единицу. По мере приближения к красному и сине-фиолетовому участкам спектра чувствительность глаза резко снижается. Относительную чувствительность глаза к разным участкам спектра называют относительной видимостью.

Световой поток (F) – мощность лучистой энергии, оцениваемаяглазом по производимому ею световому ощущению. Единица светового потока – люмен (лм) – световой поток, излучаемый точечным источником при силе света в 1 канделу (кд) в телесном угле в 1стерадиан (ср); стерадиан – телесный пространственный угол свершиной в центре сферы, вырезающий на поверхности сферы площадь, равную площади квадрата со стороной, длина которой равна радиусу сферы.

Сила света (J) – пространственная плотность светового потока (часть светового потока) от источника света в данном направлении внутри определённого телесного угла. Единица силы света – кандела (кд) – сила света, излучаемая в перпендикулярном направлении от источника (абсолютно черного тела с площади 1/600000 м2 при температуре затвердевания платины).

Освещенность (E) – поверхностная плотность светового потокаF, падающего на поверхность S, определяемая по формуле: E = F / S. Единица освещенности – люкс (лк) – освещенность поверхности площадью 1 м2 при падающем на неё световом потоке 1 лм.

Не всегда световой поток, падающий на освещаемую поверхность, полностью отражается от нее по направлению к глазу. Решающая роль в процессе видения принадлежит той части светового потока, которая, отражаясь от освещаемой поверхности, попадает на световоспринимающие элементы глаза, что и вызывает зрительное ощущение. Поэтому с точки зрения физиологии зрительного восприятия важен не падающий световой поток, а отраженный от освещаемой поверхности – яркость. Яркость (L) – величина светового потока, отраженного освещаемой или светящей поверхностью по направлению к глазу. Единица яркости – кандела на квадратный метр (кд/м2) – яркость равномерно светящей плоской поверхности площадью 1 м2, излучающей вперпендикулярном к ней направлении силу света, равную 1 канделе.Яркость определяется специальными приборами яркомерами.Яркость светящейся поверхности зависит от испускаемой ею силы света, угла, под которым рассматривается объект или поверхность и от ее световых свойств, так как падающий на поверхность световой поток частично пропускается и поглощается телом, а частично отражается. При постоянстве освещенности яркость фона или предмета тем больше, чем больше его отражательная способность, т. е. светлота.

Отражательная способность окружающих нас предметов неодинакова. Оптимальным уровнем яркости при выполнении зрительных работ считается яркость 500 кд/м2. Чрезмерно высокая яркость, вызывающая зрительный дискомфорт – слепимость, называется блёскостью. Различают блескость прямую (создается источниками света и осветительными приборами – светильниками, окнами), периферическую (от светящихся поверхностей, расположенных вдали от направления зрения), отраженную (от зеркальных поверхностей) при работе с металлом, стеклом, пластмассой и др. Коэффициент отражения – отношение отраженного светового потока (Fотр) к падающему (Fпад), определяемое по формуле: b = Fотр/ Fпад. Коэффициенты отражения зависят от цвета поверхности и принимаются следующими: белый цвет – 0,7-0,8; светло-бежевый, жёлтый – 0,5; цвет натурального дерева – 0,4; зеленовато-голубой – 0,3; голубой – 0,25; светло-коричневый, цвет крови – 0,15; коричневый, синий, фиолетовый – 0,1.

Коэффициент светопропускания (Т) – отношение светового потока, прошедшего через среду (Fпроп), к падающему световому потоку (Fпад) : T = Fпроп/ Fпад. Этот коэффициент позволяет оценивать качество и чистоту оконных стёкол, осветительной арматуры.

Коэффициент пульсации освещённости характеризует колебания во времени светового потока, падающего на единицу поверхности. Коэффициент пульсации освещённости определяется отношением амплитуды колебаний освещённости к их среднему значению и вычисляются по формуле:

где Емакс – максимальное значение освещённости за период её колебания, Емин – минимальное значение освещённости за период её колебания, Еср – среднее значение освещённости за тот же период, лк.

Стробоскопический эффект – явление искажения зрительноговосприятия вращающихся, движущихся или сменяющихся объектов в мелькающем свете. Оно возникает при совпадении кратности частотных характеристик движения объектов и изменения светового потока во времени в осветительных установках с газоразрядными источниками света, питаемыми переменным током.

Гигиеническая оценка естественного освещения помещений.

Естественное освещение в производственных помещениях может быть боковым, верхним, комбинированным. Для его оценки пользуются двумя видами показателей:

· светотехническими (прямой метод)

· геометрическими (косвенный).

Прямой метод.

Предлагает использование объективного люксметра (тип Ю-16, Ю-116). Принцип устройства люксметра основан на преобразовании светового потока в электрический ток, измеряемый гальвонометром. Между образующимся фототоком и освещённостью имеется прямая зависимость, позволяющая по величине силы тока определить освещённость поверхности в люксах.

Рис. 1.Люксметры Ю 117, Ю 116.

Объективный люксметр состоит из двух частей: селенового фотоэлемента, вставленного в оправу, и чувствительного стрелочного гальванометра, шкала которого градуирована в люксах. Прибор работает на трёх поддиапазонах: до 25 лк, до 100 лки до 500 лк. Для измерения большей освещённости применяется насадка – светопоглотитель(сила поглощения которого равна 100). Фотоэлемент устанавливают на рабочем месте и по шкале гальванометра с учётом используемого поддиапазона и насадки – светопоглотителя отмечают число делений, на котором остановилась стрелка.

Косвенный метод.

Предлагает использование нескольких показателей: коэффициента естественной освещённости (КЕО), светового коэффициента (СК), коэффициента глубины заложения (КГЗ), угла отверстия в глазу и угла падения, некоторых добавочных показателей.

Коэффициент естественной освещённости (КЕО) нормируется и, следовательно, носит законодательный характер. КЕО определяется при помощи люксметра и представляет собой отношение горизонтальной освещённости внутри помещения на рабочем месте к одновременно измеренной горизонтальной освещённости под открытым небосводом (при рассеянном свете), выраженное в %. КЕО (при боковом освещении) – в школах, читальных залах – не менее 1,5%, в жилых помещениях – не менее 1 %.

Световой коэффициент (СК) носит рекомендательный (не законодательный) характер. СК выражается дробью, числитель которой – единица, а знаменатель – частное от деления площади помещения на площадь поверхности стёкол (остеклённой поверхности окон).

Рис. 2. Определение угла падения (САВ) и угла отверстия (ВАД).

Коэффициент глубины заложения (КГЗ) – отношение глубины заложения (или расстояния от наружной (светонесущей) стены до противоположной стены) к высоте помещения от пола до верхнего края окна (школы – не более 2, жилые здания – не более 2,25).

Угол падения – это угол, образованный двумя прямыми, идущими от рабочего места (исследуемой точки): одной горизонтальной (к нижнему краю окна), а другой – наклонной (к верхнему краю окна). Угол падения зависит от высоты окна, а также от расстояния исследуемого места до окна (не менее 27).

Угол отверстия - это угол, образованный двумя линиями, одна из которых идёт из исследуемой точки помещения к верхнему краю окна, а другая же направляется к верхней точке предмета, расположенного напротив окна (к крыше соседнего дома, вершине дерева и т.д.) (не менее 5).

При оценке естественного освещения также важно учитывать расстояние от верхнего края окна до потолка (оптимально 15 – 30 см, но не более 50 см), высоту подоконника (75-90 см), площадь оконных переплётов(не более 25 % общей площади окон),размер межоконных простенков(не более 1,5 ширины оконных проёмов), ориентацию зданий, помещений.Стёкла в оконных проемах должны быть ровные, прозрачные, чистые,затеняющих предметов на окнахне должно быть. Расстояние между фасадами зданийдолжно быть не более удвоенной высоты наиболее высокого из них.

В помещениях общеобразовательных учреждений обеспечиваются нормированные значения КЕО в соответствии с гигиеническими требованиями к естественному, искусственному, совмещенному освещению жилых и общественных зданий. При одностороннем боковом естественном освещении КЕО на рабочей поверхности парт в наиболее удаленной от окон точке помещения должен быть не менее 1,5%. При двустороннем боковом естественном освещении показатель КЕО вычисляется на средних рядах и должен составлять 1,5%.Световой коэффициент должен составлять не менее 1:6.Окна учебных помещений должны быть ориентированы на южные, юго-восточные и восточные стороны горизонта. На северные стороны горизонта могут быть ориентированы окна кабинетов черчения, рисования, а также помещение кухни. Ориентация кабинетов информатики – на север, северо-восток.Рекомендуется использование штор из тканей светлых тонов, обладающих достаточной степенью светопропускания, хорошими светорассеивающими свойствами, которые не должны снижать уровень естественного освещения. Для рационального использования дневного света и равномерного освещения учебных помещений следует не закрашивать оконные стекла;не расставлять на подоконниках цветы, их размещают в переносных цветочницах высотой 65 – 70 см от пола или подвесных кашпо в простенках между окнами;очистку и мытье стекол проводить по мере загрязнения, но не реже 2 раз в год (осенью и весной).

Гигиеническая оценка искусственного освещения помещений.

Искусственное освещение в производственных помещениях может быть общим (равномерным или локализованным) и комбинированным (общее + местное); рабочее (общее или комбинированное), аварийное, эвакуационное.

Совмещенное освещение – освещение, при котором одновременно применяется естественное и искусственное освещение в течение полного рабочего дня.

Общее освещение – освещение, при котором светильники размещаются в верхней зоне помещения равномерно (общее равномерное освещение ) или применительно к расположению оборудования (общее локализованное освещение ).

Комбинированное искусственное освещение помещения – освещение, при котором к общему освещению добавляется местное.

Местное освещение – освещение, дополнительное к общему, создаваемое светильниками, концентрирующими световой поток непосредственно на рабочих местах.

При обследовании искусственного освещения помещений устанавливают в первую очередь соответствие его гигиеническим требованиям: достаточность освещенности, равномерность и отсутствие блёскости, благоприятный спектральный состав (спектр должен быть близок к естественному свету), непрерывность светового потока от источника света, отсутствие ослепляющего действия, учёт требований безопасности труда, правильность выбора светильников, арматуры, их расположение, мощность ламп и т.д.

Рис. 3.Люксметр + УФ-Радиометр ТКА-ПКМ

Рис. 4. Люксметр + Пульсметр ТКА-ПКМ

Для оценки величины искусственной освещённости используются методы прямой люксметрии (методика использования объективного люксметра аналогична как и при измерении естественной освещённости), определение удельной мощности искусственного освещения и метод «ватт» (определение средней горизонтальной освещённости).

В учебных кабинетах, аудиториях, лабораториях уровни освещенности должны соответствовать следующим нормам: на рабочих столах – 300 – 500 лк, в кабинетах технического черчения и рисования – 500 лк, в кабинетах информатики на столах – 300 – 500 лк, на классной доске – 300 – 500 лк, в актовых и спортивных залах (на полу) – 200 лк, в рекреациях (на полу) – 150 лк.При использовании компьютерной техники и необходимости сочетать восприятие информации с экрана и ведение записи в тетради освещенность на столах обучающихся должна быть не ниже 300 лк.

Определение удельной мощности искусственного освещения производится путём подсчёта общей мощности ламп в помещении (ватт) и деление этой величины на площадь пола (м 2), выражается полученная величина в ватт/м 2 (Вт/м 2). Удельная мощность для разных помещений различна(в школах при люминисцентных лампах – 16-24 Вт/м 2 ,при лампах накаливания – 36-48 Вт/м 2).

Для оценки равномерности освещения (называют иногда и коэффициентом неравномерности) необходимо найти отношение освещённости одной точки (обычно наименьшей освещённости) к другой (обычно наибольшей освещённости), находящихся на расстоянии 75 см в одной плоскости (не менее 0,5).

Определение яркости производится специальным визуальным люксметром, для чего приёмное отверстие окулярной трубки направляют на источник света и определяют степень освещения в люксах и результат умножают на постоянный коэффициент (множитель) равный 27*10 -6 , при этом получают значение яркости в нитах.

При гигиенической оценке искусственного освещения помещений необходимо знать характеристику светильников . Светильниками называют осветительные приборы, состоящие из источника света и осветительной арматуры. Светильники делятся на 3 основных типа: прямого, отраженного и рассеянного света. 80 % светового потока в светильниках прямого света направлено вниз, 80 % светового потока в светильниках отраженного света направлено вверх, на потолок и стены, 60 % светового потока в светильниках рассеянного света направлено вверх, 40% – вниз.С гигиенической точки зрения предпочтение отдается светильникам рассеянного света из молочного, опалового или матированного стекла, которые равномерно освещают помещение и не создают резких теней. Высота подвеса светильников: оптимальная – не менее 2,6 м от пола; допустимая – не менее 2,2 м от пола.

В настоящее время преимущественно используют электрическиеисточники света : лампы накаливания, люминесцентныеи светодиодныелампы. Основными характеристиками электрической лампы являются напряжение (вольт) и мощность (ватт).

Лампы накаливания относятся к источникам света теплового излучения, в их спектре преобладают желто-красные лучи, что искажает цветовое восприятие. Они являются наиболее надежными источниками света в связи с простой схемой их включения, а условия внешней среды не оказывают влияния на их работу. К основным недостаткам этих ламп можно отнести небольшую светоотдачу (7–20 лм на 1 Вт энергии) и высокую яркость.

Люминесцентные лампы различаются по спектральному составу излучаемого света. Выпускаются осветительные лампы дневного света (ДС), белого света (БС), холодно – белого света (ХБС), тепло – белого света (ТБС), лампы с улучшенной цветопередачей (ЛДЦ, ЛТБЦ, ЛХБЦ). Люминесцентные лампы характеризуются следующими показателями: высокой светоотдачей, спектр ближе к естественному, малая яркость, рассеянный свет без резких теней, более правильная цветопередача. Однако физиологически освещённость этими лампами воспринимается ниже, поэтому нормы освещённости при люминесцентных лампах повышены в два раза. Также люминесцентные лампы крайне не рекомендуется применять во влажных помещениях, в помещениях с высокой температурой, а также при низкой температуре, люминесцентная лампа не выходит на полную светоотдачу (не разгорается). Возможен стробоскопический эффект. Наличие в люминесцентных лампах них паров ртути приводит к проблемам с их утилизацией.

Светодиод – полупроводниковый элемент, пропускающий электрический ток в одном направлении, излучая при этом заданный диапазон световых волн, видимый человеческому глазу. Светодиодная лампа состоит из выпрямительного блока и разного количества светодиодов (в зависимости от модели). На сегодняшний день имеет наиболее высокую энергоэффективность(светоотдача на уровне 100-150 Лм/Вт);высокий срок службы, в районе 100000 часов; малая температура нагрева;возможность использования при низких температурах окружающей среды, однако эксплуатировать светодиодную лампу при повышенной влажности не рекомендуется; несомненным преимуществом является механическая прочность (отсутствуют легко бьющиеся детали), а также виброустойчивость. Светодиодные лампы выпускаются в двух исполнениях – рассеивающие свет и как точечные источники. Необходимо также отметить широкий цветовой ряд. Недостатки – высокая стоимость;невозможность использования в условиях высоких температур.

Результаты научных исследований (Кучма В.Р., Текшева Л.М., М., 2013) определили преимущество светодиодного освещения в учебных помещениях образовательных учреждений, а также административных и общественных зданиях различного целевого назначения, заключающееся в создании более благоприятной световой среды для зрительной и умственной работы учащихся разного возраста и взрослых, их психофизиологического и функционального состояния (более устойчивый уровень работоспособности, меньшая степень распространенности выраженного утомления, сохранение высокого уровня резервных возможностей организма, стабильность зрительной системы, оптимизация психоэмоционального состояния, снижение негативного воздействия от компьютерной нагрузки – по сравнению с люминесцентным освещением). Субъективная оценка условий освещения при светодиодныхлампах– более комфортные по сравнению с люминесцентными.

Для определения необходимого количества светильников нужно удельную мощность (Вт/м 2) умножить на площадь помещения и разделить на мощность одной лампы. Следует помнить, что величина удельной мощности зависит от подвеса светильника, площади помещения, освещённости, которую необходимо создать в данном помещении и вида ламп.

Примечание:

· освещение рабочих помещений нормируется в зависимости от характера выполняемой работы, её точности; максимальных размеров объекта различения (делятся на 8 разрядов), контраста фона с объектом различения и коэффициента отражения фона (разряды делятся на подразряды: а, б, в, г), характеристики фона.

· не рекомендуется совмещение в одном помещении устанавливать люминесцентные лампы и лампы накаливания; в помещениях без естественного света освещённость должна быть повышена на 25 – 30 %; при освещении ниже 75 лк – ощущение сумеречности.

Задание.

1. Ознакомьтесь с устройством и принципом работы люксметра.

2. Дайте гигиеническую оценку условиям естественного и искусственного освещения учебной аудитории.

Образец протокола для выполнения задания.

1. Гигиеническая оценка естественного освещения.

а) вид освещения (боковое, верхнее, комбинированное, одностороннее, двух-, трёхстороннее);

б) ориентация окон;

в) количество окон …. , их форма……., чистота оконных стекол, величина простенков между окнами;

г) цвет окраски потолка, стен, пола, оборудования;

д) определение СК (суммарная площадь остекления окон …….м 2 , площадь пола ……..м 2 , СК ……);

е) определение угла падения (чертёж и расчёты);

ё) определение угла отверстия (чертёж и расчёты);

ж) определение коэффициента заглубления;

з) определение КЕО: наружная горизонтальная освещенность …….. лк; освещенность на

рабочем месте.……. лк; КЕО ……..% .

2. Гигиеническая оценка искусственного освещения.

а) в аудитории ……….система освещения, установлены ……… светильники типа …………, место их размещения. .………….., количество ламп……… ;

б) определение освещенности на рабочем месте;

в) определение равномерности искусственного освещения: соотношение минимальной и максимальной освещенности в лк на расстоянии 0,75 м..….;

г) определение удельной мощности освещения: число ламп ……, мощность одной лампы…….Вт, площадь пола..…м2 ; удельная мощность светильников ………Вт/м2 ;

д) расчёт необходимого количества светильников для создания заданной освещенности в аудитории. Заключение. Дать гигиеническую оценку естественному и искусственному освещению учебной аудитории.

Обсуждение полученных результатов.



Статьи по теме